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This paper presents a method for determining the air forces on an
oscillating finite wing of generel plan form in subsonic flow including
the limiting case of sonic flow. The method utilizes some of the concepts
developed by Falkner (British R. & M. No. 1910) for steady lifting-surface
theory. The loading on the wing is assumed to be given by a series con-
taining unknown coefficients which satisfies various boundary conditions
at the edges. The required integrations are performed by approximate
means, and a set of simultaneous equaetions in terms of the coefficients
in the loading series is obtained. Solution of this set of equations
then gives the loading coefficients. The method is applied to rectangular
and delta wings and comparison is made with ex1sting theory. A semple
calculation is given in an appendix.

TINTRODUCTION

The analytical determination of the air forces on oscillating wings
has been a continuing problem for over 30 years. Most of the effort has
been directed toward the determination of the forces on wings in two-
dimensional flow, and results have been obtained for a complete range of
Mech numbers, both subsonic and supersonic. For finite wings, however,
the analytical work is still in a state of development for all speed
ranges. The main effort has been directed toward the incompressible
case (for example, refs. 1 to 8) and the supersonic field (refs. 9 to 1)
leaving an important area virtually untouched, namely, the subsonic range
of Mach numbers between O and 1. Among the few studies that have been
made in this range of Mach numbers have been those of Merbt snd Tandaehl
(ref. 15) , who extended some of the work at very low aspect ratio to
include the effect of Mach number, and the work of Voss, Zartarian, and
Hsu (ref. 16). In addition, Reissner (ref. 17) mede a preliminary
assessment of the use of Mathieu functions for subsonic compressible flow,
and W. P. Jones (ref. 18) and Lehrian (ref. 19) studied the cases for
larger aspect ratios. The present paper deals with some recent efforts
vhich have been made toward filling this gap, namely the development of
a wing-surface theory for subsonic and sonic f£low.
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In the stationary two-dimensional case, the effects of compressi-
bility may readily be obtained from results of incompressible theory by
application of simple transformation or correction factors such as the
well-known Prandtl-Glauert factor. 1In the stationary three-dimensional
case, the effect of compressibility may be treated as an extension of
the two-dimensional procedure in a simple manmer as proposed by GSthert
(ref. 20). TIn a further extension for the oscilleting compressible case,
Miles (ref. 21) has proposed a method involving several transformation
steps for correcting the results of incompressible theory to include the
effects of compressibility for a finite wing. The method is, however,
restricted to low values of the reduced fregquency. It therefore appears
to be necessary to deal with the boundary-value problem directly in order
to provide a method of general applicability which mey be used, for
example, in flutter work.

The linearized boundaxry-value problem for the oscillating finite
wing in a compressible flow may be approached from two points of view.
One spproach involves the transformation of the governing differential
equation by a suitable choice of coordinates followed by the use of the
classical method of separation of variables. Solutions are then found
in terms of series of orthogonsl functions. This method was used by
Schade and Krienes (ref. 22) in obtaining solutions for the oscillating
circular plate and has recently been generalized by Kuessner (ref. 23).
It has been pointed out that there is a definite 1limit to the number of
generalized coordinate systems eppropriate to the wave equation and to
the corresponding orthogonal fumctions available. The method is, there-
fore, limited to specialized plan forms such as the circular or the ’
elliptic plate.

The second approach involves a direct consideration of the integral
equation relating pressure and downwash. The integral equation may be
derived from the standpoint of either the velocity potential or the
acceleration potential., TInasmuch as one is primarily interested in the
pressures on the wing surface, it seems more direct to use the form of
the integral equation associated with the pressure, namely, the acceler-
ation potential approach; therefore, this procedure is used in the
present paper.

Basic to the solution of the integral equation is the evaluation
of its kernel, a function vwhich represents the downwash at a point in
the plane of the wing due to a umit loading. Only recently (ref. 24),
the kernel function for oscillating finite wings in subsonic and sonic
flow has been reduced to a form which can be conveniently evaluated,
This background of available information on the kernel has led to the
consideration of numerical approaches for handling the integral equation
in the development of general lifting-surface methods which could be
used for any speed range.

¢
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A similer integral equation appeers in the steady case, but
involves a much simpler kernel function and e number of approximate
solutions have been successfully developed. In selecting an approxi-
mate method for handling the integral equation in the oscillatory case,
the various procedures developed for the steady case were examined. In
considering these procedures, it was kept in mind that a Llifting-surface
theory which is to be used for flutter calculaetions must meet certain
requirements beyond those usually considered in the steady case. One
essential requirement is that not only the 1ift but also the moment must
be accurately predicted. In several of the methods now being used for
the steady case, the wing 1s essentially replaced by a single line &t
the l/h-chord position. This placement essentially fixes the center of
pressure at the l/h chord, and thus the moment is constrained to become
a function only of the 1ift force. In the case of an aiirplane of normal
configuration with a teil placed a considerable distance from the wing,
‘the contribution of the wing pitching moment is very small compared with
the pitching moment due to the tall. However, for tailless configurations
and for aeroelastic problems such as flutter, the moment on the wing is
of predominemt importance and must be accurately predicted.

In addition to the previously mentioned requirement of predicting
the moment, the method should be easily adeptable to the calculation of
the loading on oscillating flexible wings and, im addition, should teke
into account the effects of compressibility. It appeared that, among
others, a method developed for the steady incompressible case by Falkner
(ref. 25) could be extended to include these requirements and this method
was selected as the basis for the present investigation.

Among other methods considered was a multiple-line approach suggested
by the procedure of Schlichting and Kehlert (ref. 26) for the case of
steady flow. The procedure 1s thought to be of interest in that it indi-
cates a simpler alternative means of handling the lifting-surface problems.
An extension of this method to the oscillatory case is also made in the
present investigation.

The primsry aim of the present investigation has been the develop-
ment of a lifting-surface method for calculating the forces on a wing of
sny plan form which is harmonically oscillating in a subsonic or sonic
flow. The method uses some of the concepts of Falkner in an extension
to the compressible oscillating case. First, a brief description of the
bagic integral equation and some of the possible means of solution are
given. Then, the basic theory of the method is given in detail in the
body of the report, and the results of some calculations are shown for
rectangular and delte wings. In appendix A, the numerical details of
calculating the forces on a rectanguler wing are given as an example.

In appendix B, a treatment is given for certain integrals which arise
in the method and which contain singularities. In appendix C the expres-
sion for the pitching moment for a delte wing is obtailned. Finally, in
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appendix D, a description and some results of applying a multiple-line
approach, based on a procedure used by Schllcting and Kahlert for steedy

flow, are given.
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SYMBOLS

aspect rétio

axis of rotation measured from midchord in terms
of half-chord, positive aft

coefficients in expression for loading
half-chord, £t

1lift coefficient assoclated with a degree of
freedom q

moment coefficient associated with a degree of
freedom g

chord, £t

nondimensionel downwash factor defined by equation (29)

chordwise loading function

chordwise replacement loads

spanwise loading functions

kernel of three-dimensional integral equation

kernel of two-dimensional integral equation,
K(MJZ) = f KE’L%(X‘E ),%(y-n )]dﬂ
- 00 R
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K nondimensional three-dimensional kernel defined by
equation (29)

k reduced-frequency parsmeter based on half-chor@, bm/V

k reduced-frequency perameter based on €, k = %%

Lq to;gl 1ift on wing, associated with a degree of freedom q,

1 reference length

M Mach number

Mq moment about &, associated with a degree of freedom g,
£t-1b

n,m,J Integers

q dynamic pressure, %pv2

Ry = J(x - £)2 + g2(y + 1)2

Rp = \/(x - £)2 + p3(y - 1)2

S area of wing surface

8 semispan of wing, £t

t time

v stream velocity

w(x,y,t) vertical induced velocity or downwash

X,¥,2,6,1 rectengular coordinates

Xg control-point location
Xo = (x - xp)
Xy chordwise coordinate for replacement loeds

Yn distance from control point to center of segment
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Yo =¥ -
y'_,y! distances from a control point to midpoints of loed segments Y
L™ R located, respectively, to the left and right of the wing
midspan, referred to €
Z = k(xg - g) or k(xg - x.v)
a generalized coordinate of an enguler displacement
B = 1-2
r'(e,n) vorticity distribution
APy (n) loading function defined by equation (26)
&p(E,m) pressure difference
o) thickness ratio
€ semispan of spanwise load segment, s/20, £t ”
8 angular chordwise coordinate, x = -cos ©
A variable of integretion
p air density
o2 angular spanwise coordinate, 17 = -cos ¢
¢ phase angle between 1lift or moment and position
w circular frequency, radia.ns/sec
Subscript:
q denotes a degree of freedonm

DISCUSSION OF INTEGRAL EQUATION AND METHODS OF SOLUTTION

The determination of the aerodynemic forces on an osclllating wing
1s a problem which, in general, must be handled by approximate or iter-
ative procedures. In the two-dimensional case one approaech to the
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Problem has been the transformation of the governing differential equa-
tion and its associated boundery conditions to an integral equation for
vwhich approximate solutions can be found. It is interesting to note
that for this two-dimensional case, an iterative solution based on the
integral-equation approach preceded a more exact solution based on a
series of Mathieu functions by about ten years.

In the case of wings of finite span, a transformstion similar to
that made in the two-dimensional case and leading to an integral equa-
tion can be made. The integral equation may be derived on the basis
of the velocity potential or on the basis of the acceleration potential.
The advantage of the use of the acceleration potential rests in the fact
that the tralling surface of discontinuity is not explicitly introduced
into the problem and the integral equation relates directly the downwash
end the pressure difference on the wing. The disadvantage of the accel-
eration potentiasl as compared with the velocity-potential approach lies
in the appearance of a more complicated kernel of the integral equation.

Integral Equation

For compressible flow, the integral equation as derived on the
basis of the acceleration potential and given, for example, in refer-
ence 2t may be written as

W(x;ry:t) - &g@—_g’") Kﬁi,e(x-g),g(y-nﬂ ag an (1)

where w is the known vertical induced velocity or downwash, Ap(t,n)
is the loading or pressure difference (positive upwerd) at a point (E,'Q)
on the wing surface, V is the stream velocity, and K is the kernel
of the integral equation. The pressure difference Ap(t »1) 18 related
to the bound vorticity through the equation

2p(E,n) = pVT(E,7)

so that equation (1) is sometimes written with m replaced by
ar
#‘—). The function K represents, physically, the contribution to

.the downwash at a field point (x,y) in the plane of the wing due to a
unit pressure difference at a loading point (g,n) also located in the
plane of the wing.




8 : NACA TN 3694

The kernel K is discussed in reference 24 and appears originally
In an integral form as

5 xX-€ i;m— A M\/7\2+[32(y -1)24+p%z2 2]
3 9( B
i 8ee) Bty - ram o R0 a
z—> 0 Oz . \/7\2 12 (y-n ) 245222

(2)
where @ is the circuler frequency of the oscillating wing.

In the form given by equation (2), the kernel fumction appears as
en improper integral whose complete integration in closed form has not
been accomplished. The kernel function has been extensively treated in
reference 24, however, and has been reduced to a form which can be eval-
usted. The reduced form of the kernel given in reference 24 contains
Bessel and Struve functions and proper nonsingular integrals which can
e handled by numerical means. The kernel contains singulerities at
y-1=0 and x - &£ > 0, but these singularities have been isolated
and expressed in a form which can be handled in numerical procedures.
Also given in reference 24 is an expansion of the kernel into a series
in powers of the reduced frequency, which for the present time serves )
as the most practical form for application of the kermel.

The solubion of equation (1) requires a determination of the unknown “
loading distribution Ap(t,n) subject to known boundary conditions, In
view of the complicated nature of the kernel, an exact analytical solution
of equation (1) does not seem possible. It appears necessary, therefore,
1o consider scme numerical method of solutlion and several possible approx-
imate methods are discussed in the next section.

Some Approximate Procedures

In searching for an approximate meens of handling the integral
equation, two spproaches seem likely, one Involving an approximation
for the kernel and the other an approximation for the loading. The first
of these would involve a replacement of the complicated kernmel fumction
by & simpler function which behaves in a similer manner (with regard to
singularities, and so forth) but with which the integral equation could
be inverted and solved analytically for the wmknown loading. Such a
procedure has been used by Fettis (ref. 27) for the two-dimensional,
subsonic, oscillatory case and, in part, by Lawrence (ref. 28) for the
finite wings in incompressible steady flow and by Lawrence and Gerber
(ref. 29) for oscillating finite wings in incompressible flow. The *
application of such a procedure to the case of compressible flow would
be quite difficult, but is perhaps worthy of further consideration.
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A second possible approach involves leaving the kernmel unchanged
and selecting an appropriate expression for the loading which leaves
only certain umknown coefficients to be determined. By such a procedure
the integral equation can be reduced to a sum of definite integrals and
the unknown constants can be determined by collocation, that is, by
forcing the solution to fit the known downwash conditions at a number
of points on the surface. Although difficulties arise in the integra-
tions because of singularities in the kernel and the loading, they can
be handled in numerical methods. Various forms of this procedure have
been used quite successfully for oscillating two-dimensional wings and
for finite wings in steady flow.

A logical extension of this second approach, the choice of a
replacement function for the loeding, to the three-dimensional problem
would involve finding a means of handling the definite integrals which
arise. Tt would seem possible to divide the wing into many small areas
and, with an assumed form of the loading on each area, integrate numer- -
ically over each area to find the downwash at & point on the surface.
Such a procedure would lead, however, to a system of equations in the
unknown constants of at least the order of the number of areas so that
lengthy computations would arise which would require computing equipment
of great capacity. :

In searching for a less cumbersome method, it is natural to study
the possibility of utilizing some of the concepts of procedures which
have already been developed for the case of steady flow. Several methods
for steady flow seem adaptable to the unsteady problem. Among those to
be considered are the procedures of Falkner (ref. 25), Multhopp (ref. 30),
Weissinger (ref. 31), and Schlichting and Kshlert (ref. 26). A brief
discussion of these methods in relation to the objectives of the present
investigation is given subsequently.

The methods developed for the steady case by Falkner and by Multhopp
represent attempts at lifting-surface procedures for handling the integral
equation. In both approaches, the umknown loading is expressed in terms
of a series of chosen modes of losding with unknown coefficients to be
determined by collocation. In both methods, also, the double integrations
are performed numerically and lead to sets of downwash factors. It
appears that either method could be extended to the unsteady case and
systematized through the development of sultaeble tables of the downwash
factors. For the purpose of extending such procedures to the unsteady-
flow problem, in the present investigation, the Falkmer procedure has
been considered preferable since considerably fewer tebulations are
required. The development of a lifting-surface approach based on the
method of Falkner is the main objective of this paper. An extension
of the steady-state procedure of Multhopp to the oscillatory case has
been performed by Jordan and some results are given in reference 32.
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Tt should be noted that W. P. Jones (refs. 2 and 18) has also

treated the problem of determining the aerodynsmic forces on wings of
any plan form by using some of Falkmer's concepts. The method differs
from the one to be presented in this paper and pursues a different numer-
ical path since in the Jones procedure the basic integral equation was
treated on the basis of the concept of the velocity potential. The use
of the velocity potential results in a double integration over the entire
field of velocity discontinuity, that is, over the wing and its wake.
The use of the acceleration potential, employed in this paper, lnvolves
a double integration only over the area of pressure discontinuity, that
is, over the wing surface itself, since no pressure discontinuity exists
in the wake.

Other steady-state procedures mentioned previously were those of
Schlichting and Kehlert and of Weissinger. These methods represent
lifting-line rather than lifting-surface approaches. In the Weissinger
method a single lifting line is placed at the 1/4-chord position on the
surface and the known downwash is satisfied at points on the 3ﬂ+-chord
position. The Schlichting procedure makes use of several 1lifting lines.
The surface is divided into a number of spanwise strips of equal chord.
A 1ifting line is placed at the l/lt—chord position of each strip and the
downwash conditions are satisfied at points on the 3/J+—chord position
of each strip. Since a lifting-line procedure might be expected to
involve less labor than a lifting-surface approach, an attempt was made
in the present study to extend the Schlichting method to the case of
wsteady flow. The application of the Schlichting approach to the
oscillating case is discussed in appendix D,

In the following two sections the lifting-surface method of the
present paper is developed, first for the case of subsonic flow and
then for the limiting case of M = 1.

DESCRIPTION OF SURFACE-LOADING METHOD FOR SUBSONIC FLOW

The solution of the integral equation for the case of an osclllating
‘three-dimensional wing involves a double integration over the plan form
of the wing as indicated by equation (1):

W(x’g”t) = &quéﬁ‘Ap(g,n)K'Ed,$(x‘§):%.')(Y"Tli] dg dn

Of the three main ingredients of the problem - the downwash, the kermel,
and the loading - which are related by this equation, two can be considered

(]

-

w
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as known. The kernel function K can be evaluated through the use of
the forms given in reference 24. The downwash w(x,y,t) is detérmined
by the motion of the airfoil. This leaves as the only unknown in eque-
tion (1) the fumction Ap(E,n), the magnitude of the loading at points
(¢,1) of the surface.

Statement of the Boundary Conditions for the Downwash

For linearized flow, the downwash function w(x,y,t) can be deter-
mined from the motion of the mean surface of the alrfoil through the
relation

W(x:}r:t) = ‘é‘i‘ f(x:y:t) +V 'a‘ax‘ f(x:Y:t) (53)

where, for harmonic motion,

= iust
f(x:y':t) =f (x:y)e

so that f(x,y) is the amplitude of the displacement of the mean surface
from the equilibrium position. Once an appropriate fumction for T(x,y)
is chosen, the downwash is known and the loading can be determined from
equation (1). For the usual modal type of flutter analysis, for example,
f(x,y) could be found from the assumed vibration modes of the structure.

Because the basic problem of determining the loading for a given
downwash as expressed by equation (1) is linear, it is often convenient
to consider the problem separated into a sum of individual problems )
each associated with a particular selected type of motion or degree of
freedom and, hence, with a particuler downwash function. This implies
that the total downwash can be written as a sum of individuasl downwash
functions, so that equation (3a) appears as

w(x,y,t) = (gat—+ \ %)Fl(x,y) + fe(x,y) + o . .+ fq(x,y)j,ej‘(Dt

[Fule) + wplew) & - wq<x,yﬂ Lot (3b)

where wq(x,y) is the downwash associated with the particular degree of
freedom fq(x,y) . The basic problem of this paper is then the determina-
tion of the loading qu(g,n) associated with any one of the downwash
factors wq(x,y). :
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Treatment of the Loading

In sddition to the downwash conditions set by equations (3), the
loading /p(t,n) must satisfy various conditions at the edges of the
plan form. In the chordwise direction, for subsonic flow, the loading
mist be infinite at the leading edge and vanish, in accordance with the
Kutta condition, at the trailing edge. In the spanwise direction, the
loading should become zero gt the wing tips.

Series expression for the loading.- As s first step In the deter-
mination of the unknown loading, it is assumed that the function Ap(E,q)
can be expressed in terms of a series of both spanwise and chordwise
pressure or loading modes, so chosen as to satisfy the edge conditions
Just discussed and containing arbitrary coefficients to be determined.
‘The spanwise modes are expressed in terms of the varisble 7. It is
convenient to express the chordwise pressure modes in terms of an often
used variable 6, related to ¢ and based on the circular cylinder
enveloping each chord as dismeter and shown by the following sketch and
in the following equation:

T —— » ¥,1 -
~
~
'\
x’g fte(n)a
€ =£7(n) - b(n)cos © (%)

where

b(n) = %E’te(n) - fze(nﬂ

In terms of the varisbles 6 and 71, the loading associated with
a particular downwash distribution wq(x,y) mey be expressed in terms

of the summatlion of pressure modes and written as
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qu(g,n) = %;E('% \/52 - ngE:ot %(ago + ag‘l'q + agzne S ) +
I | 1, a a
sin6810+a__un+812n +...+s:11126320+aﬂn+
aczlz'q2+. . .)+. . :l (5a)

where the superscript q ddentifies a particular downwash.

The series form of the loading given by equation (5a) satisfies
the Kutta condition (Ap = O at the trailing edge) and has the desired

type of singularity l/ \/?c where x 18 measured from the leading edge.

The terms in 1 are of such a form as to cause Ap(g,'q) to become zero
with infinite slope at the wing tips. The use of this series form for
Ap(g,n) means the pressure distribution is essentially synthesized by
a series of chosen pressure modes and that the values of anm detexrmine

‘the contribution of each pressure mode to the final pressure distribution.

Equation (5a) can be written in more concise fofm, as

tpg(o,m) - 2 I'lio m}j':) o2 (8)ga(n) (5b)
vhere
£o(&) = cot -g- (n = 0) |
£,(t) = sin né (@m#£0)3 (6)
g, (n) = "2 - 12 )

(For symmetricael motions of a wing, Wq(x,y) = wq(x,-y), the odd

terms in n need not be retained. For unsymmetrical motions,
wq('x,y) = -wq(x,—y), the even-powered terms in 1 do not have to be

retained. TIn the numerical examples to be given in a later section,
symnetric motions are considered.)
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Tllustrative expressions for the force and moment.- The specific
problem is the determination of the coefficients ap, in equation (5a)
or (5b) and, as has been indicated, a particular set of values for apm
must be found for each downwash wq(x,y). Once a set of values for ag,
has been determined, a particuler loading Apq(t,n) is defined by equa-
tion (5a) or (5b). 'This expression for qu(g,n) gives the pressure

distribution and can be Integrated to obtain various desired section
forces or total forces. For_example, total 1ift and moment coefficients
associated with the motion fq(x,y) can be found through the relations

Lq 1 ‘
&~ OL,a = q—s_/prq(g,n)dg dn (Ta)
S
and
Mq 1 .
= Gayq = e ] (& - @Mwg(e,m)a an (7o)
S

where the moment is obtained gbout a spanwise axis £ = a.

By substituting equation (5a) into equation (Ta) the following
result for the 1ift coefficient 1s obtained which is valid for any
plan form:

2
CL,q_ A<L6&OO + 88.10 + )-I-B.OE + 2&12 + 2&0)_|_ + al’-l-) (8)

The expression for the moment about the axis considered must be
determined for each particular plan form. The moment coefficient will
take on a form similar to equation (8) but with constents determined
by the plen-form geometry. For a rectengulesr wing, for example, the
moment coefficient for moment about the midchord (a = 0) is

a2
CM,q = -3 <l6a + ll-a + 2&04 + 8a 22 + agl}) (9)

The equation for the moment coefficient for a delta-wing plan form
is given In appendix C.
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Replacement of the Integral Equation by a Summetion

of Definite Integrals

In the rest of the analysis, 1t will be convenient to deal with a
general downwash w(x,y) and to drop the subscript and superscript d.
In order to evaluaste the coefficlents e, for a particular downwash

Wq(x,y), the first step involves the substitution of the loading series
(eq. (52)) into the integral equation (eq. (1)) to glve

2
w(x‘;y) = lé%gb ﬂ , [cot ot & o1 + aogn + . . ) +

sin e(a10+alln+a12n2+ « o ) + sin 29(&20+a21'q+

a.221]2 + .. . + . . :] [ (x- g),v(y-nil dg dn (10)

or if the form for Ap(¢,n) given by equation (5b) is used, the following
is true:

(: oY) V2
Y- gqb s bt mﬂf (E)gm(n)K[ (x-g),%’(y-n)]dg an (1)

A significant step toward the desired solution of the integral
equation has now been arrived at because equation (10) or (11) is no
longer an integral equation, that is, an unknown quentity no longer
appeers under an integral sign. Instead, the downwash w(x,y) is now
given by a summation of definite integrals multiplied by various umlmown
constants a,y,. These integrals are of the form

N

ﬂ cot 2 51 \,é - 72 KEd,Q(x-g) (wni, dg dn
/fsin ne oy /32- 1]2 I{_E'I,%(X—E.);%(Y-T]ﬂ dg dn
S

(12)

y,
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The numericel evaluation of these integrals is an importent part
of the lsbor of the present method, for once their values have been
calculated, one can proceed immediately to the determination of e,

and, therefore, to the determination of the pressure distribution. Imn
the method under consideration, the required integrations are performed
numerically. Because the chordwise and spanwise integretions are
treated differently, they are discussed separately in the next two
sections, the chordwlse integration beling discussed first.

Treatment of the Integration in the Chordwise Direction

For the purpose of performing the chordwise integration it 1s
convenient to replace the right side of the Integral equation by a sum
of separate integrals, each involving a particular chordwise pressure
mode and in which the spanwise (1) and chordwise (&) integrations are
sepsrated. For this purpose equation (11) may be written as

wloy) | 1 “"Vai fon f ga ()T + Y am f gn(n)Indn| (13)
span n=1 span

v - 8tqa P =0
Where
Ip = fch o fo(g)KEd,$(x—§),$(y—n)]de (14a)
and
In = fc rord fn(e)KEd,%x-g),%(y-nil at (1)

Remarks on methods of performing the chordwise integrations.-~ One
could at this point evaluate the integrands of IO and I, at small

intervals of & eand Integrate by numerical means. This procedure would
be difficult and tedious, however, since the kermel contains singularities
and involves a large number of parameters snd slnce the integratlions would
have to be carried out for many values of 1. It is desirable to seek a
simpler, but more approximate, approach which would be less laborious.
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In the present analysis, an approach developed by Falkner in ref-
erence 25 (and discussed more fully in ref. 33) for the steady case is
used which greatly reduces the amount of labor. In essence it is assumed

thet in the integrals I, and Ip, the loading modes f£,(f) = cot & and

fn(g) = 5in n® can be replaced by en arbitrary but small number of

replacement loads which are chosen in order to satisfy some integrated
properties of the continuous loading. The use of this assumption will
result in the integrals IO and T, appearing finally as sumations

in the forms given by equations (20a) and (20b).

The use of a set of individual loads in performing the chordwlse
integrations and the procedures for evaluating them introduce approxi-
mations which are somewhet arbitrary. These approximations and their
implications will be discussed later as they arise. They correspond
to the assumptions made by Falkner and have been used in the present
Investigation for practical reasons. With high-speed computing equipment
available, some of the approximations in the development which follows
might be avoided. It can be stated, however, that, in the cases consid-
ered, the end results seem to be satisfactory.

Calculation of the replacement loads.- In calculating the values of
the replacement loads, it is first required that the sum of the individual
loads associated with a particulsr chordwise pressure mode must equal the
integrated value of the continuous chordwise loading. If the continuous
distribution is replaced by J replacement loads and G,o and Gyn
denote loads associated, respectively, with the modes cot 6/é and

sin n6, this equivalent load condition leads to the followlng set of
equations:

J 1o
:éiGm:fo cotgsinedﬁ::t (152)
and
J 7t h
%waj; sinnesinedg=g- (n=1)
> (15b)
J T
Zevn=f sin nd sin 6 ¢ = O (n>l)J
V=1 0
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The use of equations (15) imposes one condition on the replacement
loads G. However, equations (15) contain j unknowns; therefore, at
least J - 1 additional equations in terms of G are needed. In the
present method the additional equations are obtained by requiring the
downwash produced at selected points on the chord by the individual loads
to equal the downwash due to the continuous load distribution. In
imposing this condition the two-dimensional kernel fumction K is used
instead of the more complicated three-dimensional downwash factor defined
by equation (2). The relation between the two- and three-dimensional
kernel fumctions is given by the following equation:

KE& (x-g)] f Ed,“’(x—ﬁ) (y-n]

where K[JI (x—g)] is the two-dimensional kernel.

The use of the two-dimensional downwash factor at this point is
an intermediate step used only for evaluating G. In satisfying the
actual downwash on the wing in the next section the celculated replace-
ment loads are used with the three-dimensional kernel fumction., This
Intermediate use of the two-dimensionsl downwesh factor implies that
the areas close to a point contribute the major portion of the downwash
at the point.

The J - 1 &additional equations in terms of G can be written by
selecting J - 1 positions, or control points, on the wing chord denoted
by Xg at which to equate the downwash produced by the individuasl loads
‘to that produced by the continuous loading. Although the 1lift conditions
(egqs. (15)) did not require any assumption regerding the location of the
replacement loads, for the purpose of employing the downwash condition
such an assumption is necessary. In selecting this location an inter-
pretation of the meaning of the replacement loads G 18 somewhat arbi-
trary. The replacement loads G can be considered as loads distributed
over a certaln portion of the wing chord, or they may be considered as
concentrated loadse operating at perticuler points on the chord. If the
concept of a load distributed over an area is teken, then the distance
to the downwash point is physically ldentifisble as some average distance,
which for this particular case is measured from the center of the load
area. If the concept of the concentrated load 1s used, then the distance
1s measured from the point of application of the load. In elther case,

a reference point X, 1s selected as the point of spplication of the

load G so that the distance to the downwash point becomes Xg = Xpe

This distence 1s then used in developing the J - 1 downwash equations
for the determination of G.
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For the cot 6/2 term of the loading series, the downwash equations
are

J _ 1 -
Z:lGVOKgV=fl cot-g-:aine}cgg ae (162)
v: -

and, for the loading sin nb, the downwash equations became

i 1 _
> Gy, = f_l sin 10 sin 6 K, (16b)

v=1

where one such equation is obtalned for each control-point location
Xg selected. The functions K, end Ky in equations (16) are

defined as follows:

Kgy

it

K(M,Zy)

Kge = K(4,%)
and represent the two-dimensional downwash factor tebulated by Schwarz
(ref. 34). In these functions Z, = k(Xg - xy) end Zg = k(xg - g

where k = %% and where a semichord b has been chosen for convenience

as a reference length.

Tt should be noted that the integrands in equations (16a) and (16b)
become infinite at & = x and the integrals must be carefully treated.
The method of handling these Integrals 1s given in appendix B.

Other copditions which would not bring in consideration of the two-
dimensional kernel could presumsbly be used for determining values of G.
For example, in place of using the downwash conditions, J - 1 additional
equations could be written for each chordwise term of the loading series
in which the first and higher (through Jj - 1) moments of each load G
could be equated to the corresponding moments produced by the continuous
loading. By such a process, however, the loads G would not be a func-
tion of either frequency of oscillation or of Mach number. Through the
use of the downwash conditions, some effects of both frequency and Mach
number are included at this intermediste stage.
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Ilustrative equations for the loading functlons.- In applying the
method of this paper, three chordwise pressure modes have been retained.
The continuous distribution in each mode has been replaeced by four
individusl replacement loads.

In order to evaluate the replacement loads, the lead established
in the steady case with regard to locations of control points and loads
has been followed., The loads asre assumed to act at the 1/8-, 3/8-, 5/8-,"
and T/8-chord positions, and the downwash conditions are spplied at
control polnts midwey between the load stations, that is at the 174#-,
1/2-, and 3/4-chord positions. Replacement loasds based on these chord-
wise positions have been calculated for M = 0, 0.5, and 1.0 and are
presented in table I.

One set of replacement loads must be determined for each chordwise
pressure mode. For the mode involving cot 6/2, the values of Gy,

are determined from the following equations:

JC

‘ ]
GlQ+G20+G50+GhO=/; cot§sined9=m:
- — _ — L o -
Gy * Opgfaa + G5z * Gk = [ or B om0 Ty 0|
(a7)

— * — ey —— _ -e-. —
GlOK?_'L + G20 + (}301{25 + G)+OK21I- —j: cob 5 sin © K2§ dae

It
— — — — e —
GyoKsy + Gpgksp + GzoKs3 + GyoKz) = j; cot 5 sin 0 Kgp deJ

vhere the functions K used here and in equations (18) and (19) are
defined after equastion (16b).

The first of these equations imposes the 1ift conditions stated by
equation (15a). The remaining equations apply the downwash condition
of equation (16a) at each of three control points; the second equation
for example, states that at control point 1 (a’c Xg = X3 in eq. (168.)5

the downwash produced by the four loads at Xy=12 Xpops xv=3, and
Xp=l must equal the downwash produced at control point 1 by the con-
tinuous cot 6/2 loading. 7 :
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A similer set of equations can be written for each chordwise pres-
sure mode by using equations (15b) and (16b). For sin 6 +the set of
equations is

70

. _ 5 _
GH+G21+G31+%1—£ 8in<0 4o

X

N

— — — — ﬁ —
| L (18)
S o
011Ky + GorFop + C5Fos + 1Ky =]: 51020 By, a0

Gy K5y + GppKxp + Gz1Kz3 + Gy1 Kzl = ]: sin“6 —Kﬁ ae

J

end for sin 26,

I
o

G12+G22+G32+Gh2=fsmesm29d9

0

G12EJ;L+G22E12+G321—513+G1+2§11;=/:sinesineeﬁlgde )
19
It

Glziﬂ+<}221?22+a321'€23+ch2f24=f sin @ sin 26 K, a0

Jo

- — - - 7 -
G121%1+G22K32+G32K33+G1+2K3u=j; sinesin29K3§deJ

Use of the replacement loads G In the chordwise integration.- Once
the replacement loads G have been determined, by solving equations (17),
(18), and (19), continuous integrations indicated by equations (1) can
be replaced by summations of the products of the loads G and the three-~
dimensional kernel function as follows:
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J
To = b3 Gk Pen), )] (208)

and I, (eq. (14b)) becomes

_ J ® n
In =b) - GynK M:v(x-xv):v(Y-ﬂ) (20b)
v=

where the factor b arises through use of the substlitution & = -b cos 6,
In effect the continuous integrations have been represented by the
replacement loads and a mean value of the kernel. ‘These expressions

mey be substituted into equation (13) as follows:

R o
v 8rq DN 2mGyn ‘/;pan Sm(ﬂ)K\}dyg(x-xv),‘—r‘(Y-ﬂi]dﬂ (21)

v=1 n=0 m=0
leaving only the spenwise integration to be performed.
Spanwise Integration

For the purpose of discussing the spanwise integration, equation (21)
may be rewritten in simpler form as follows:

whey) | 1 53
¥ —&‘quﬂje:pan APv(n)KEfI,%(X-xv),%’(y-nﬂdn (22)

where

AP, (1) = 4pv2ii 8mCynBm (1) (23a)
n=0 m=0

v
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or

e, (n) = 4ev® \fs? - 72 [C:*vo (&oo + agpn + EL02’12) + le(alo +
ajqn + alg'qe) + Gyo (8.20 + 8oyl + 8pol2 + . . ] (23b)

Equation (23b) may be seen to ‘correspond to the original form of
the losding Ap(t,n) given by equation (5a). In equations (23), how-.
ever, the continuous chordwise-loading terms cot 6/2 and sin n€ have
been replaced by the loads Gyo and G,y.

The integration of equation (22) may be handled by several proce-
dures. A stralghtforward numerical integration could be performed for
eaeh value of xp by evaluating the kernel K at a number of spanwise

stations. However, the kernel K contains some difficult singularities
which have to be carefully considered. Moreover, in order to make tables
of these integrals for general use, tables would have to be made for
every aspect ratio, sweep angle, Mach number, and reduced frequency.

In order to facilitate the development of tables, it is desirable to
make use of a mean-value integration which involves integrating the
kernel over a short segment of spen and using the value of AP, at the

midpoint of the segment. This method was followed in the present anal-
ysis and has the advantage that the integrals have to be tabulated only
as functions of Mach number and reduced frequency.

The downwesh at a point (x,y) due to a small element of spen of
length 2e¢, the center of which is located at & =x, and 1 =yy, is

Mv(x,y) -
\’ ‘};.Y = &]t_q AP, (yN)FvN (24)
where
- +€
Fyn = /Qh Kﬁd:v@("‘xv):%@-ﬂﬂ dn (258.)
% -€

and where APV (yN) refers to the value of APV at the midpoint of
the span element over which the integration extends.
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The integral given by equation (25&) is of central importance in
the present method and represents a "downwash factor" giving the down-
wash at a point (x,y) due to a unit pressure loading acting over a span
element of length 2e¢. The value of the integral depends only on the
relative distance of the element from the point (x,y) and not on the
spanvise location of the element on the wing. For convenlence of cal-
culation, therefore, it is desirable to perform a coordinate transfor-
metion to the center of the element, so that the integral appears as a
function of distances from the point (x,y).

In order to perform this transformeation, let 7' =1 - Yy in equa-

tion (25a) wvhere 7' is a new spenwise varisble. Equation (25a) can
then be written as

- €
F =fK
YN -

€ -

- [ Kty )] e (=

Ed, (xx,) ,$(y-yN-n'):| an'

<le

where y' =y - ¥y and where y' and 7' are shown in the following
sketch:

= ¥,
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Selection of Reference Lengths

It is convenient at this point to choose certain reference lengths
in both the downwash factor F,y, defined by equation (25b), and in the

loading APy (yN), defined by equations (23). In the case of the losding,

the wing semispan s 1s chosen as a convenient reference length. If a
new verlable p = yN/s is introduced, the loading APv(yN) can be

written as

02, (1) b0 YT W) | (@6)

vhere

gn() =™V - u®

and where p 1s measured to the midpoint of the spanwise segment.

In the case of the downwash factor FvN’ the length € dis taken

as a reference length. The variables x, %y, ¥y', and 7' are then

considered in s new sense ‘to mean nondimensionsl quantities obtained by
dividing the dimensional distances by the length €. The downwash
factor F,y then appears as

-FTVN = ejii KE&,E(}:—XV) ,E(y'—’q'ﬂ dn?

where

The use of € as a reference distance introduces a factor l/e2
in the kermel (eq. (2)) as follows:
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(e7) -

% *t %E"M\/&Z*“Bz(v-n)zwaze]
Kﬁd,i(x—g),i(y-n)] =1 ¢y 2 e-ik(X-g) f B
2 |z—>0 322 0 \/7‘2"'-32(}’41)2"'3222

Equation (27) can be used to define a nondimensional kernel function E
by writing

KEQJE(X“%) JE(Y"‘TI'-)J = ;]':2_ EEdJi(x‘xp) ;E(Y'-ﬂ'i] (28)

so that K in equation (28) corresponds to the quantity in braces in
equation (27).

With the use of equation (28), the downwash factor va appears

1
— 1 — —
Fuy = gfl I_il:M,k(x-xv) ,k(y'-n‘)]dn'
Finally, a nondimensional downwash factor ¥,y can be defined as

Fynw = €Fyy = /:i KE’I,E(X-XV) ,k(yt-n? )]‘11\' (29)

Final Expression for the Integral Equation

Equations (26) and (29) can now be substituted into equation (24) to
write a final expression for calculating the downwash at a point (x,y)
on the wing, TIf the downwash due to all-the span elements over the
wing is summed, the total downwash becomes

y) | 2 i Sy W,y (30a)

v Srtae =1 gy a
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By using the expended form for AP,(u) -given by equation (26), the
total downwash can be written as (for e = s/20)

W(X;Y) _
—— =

RE

22 3 T eunCyngn(®)Fyy (30b)
n m v ¥

N

The only unkmowns in this equation are the coefficients a,,.. By

selecting a number of control-point locations (x,y) at least equal to
the number of a,,'s desired, equation (30b) can be written for each

control polnt. Thus, a set of simultaneous equations is obtained in
terms of the coefficlents 8ym which can then be calculated.

The next section 1s concermed with the calculation of the downwash
factors F,y vhich have been defined in equation (29).

Determination of Downwash Facter F

The value of the downwash factor F (eq. (29)) for the oscillatory,
compressible case 18 not available in the literature and consequently
must be derived. However, the kernel K has been discussed In detail
in reference 22, in which several forms of KX are given. One form, as
gilven by equation (20) of reference 22, would require a numerical inte-
gration in order to obtain ¥, since K cannot be integrated in closed
form. Another form of the kernel, an expansion in terms of the frequency
perameter k, 1s given by equation (54%) of reference 22 and is the form
employed In the present analysis. In reference 22, a discussion is given
of the accuracy of the frequency expansion. It is indicated that for
moderate values of k¥ and M +the series is quite good for small
distences x - %, end y' - 17'. As Kk and the distances incresse,
the series deteriorates. Overall accuracy 1s not seriously affected,
however, since the major contribution to the dovmwash at a point is
from the nearby points on the surface,

Accordingly, the serles 1s integrated term by term to obtain an
approximate value for F. OSeveral of the integrals are, however,
improper, due to the existence of singularities in thé integrend, and
the concept of the principal velue or finite part must be utilized.
(See, for example, ref. 35 for a discussion of the finite part of




g2

integrals.) The results of the integretion for an expansion to the 5th power of k is given in
equetion (31). (Tn presenting the expression for the downwesh factor ¥, it 1s comvenlent to drop
the primes on the quantities x' and ¥y' end the bar on the reduced~frequency parameter k., In
the following expression, therefors, x, ¥, end k will be considered to denote the dimeneionless
quantities referred to e umlt lqu-t.h.s

FVH = fd:l: E(xosy"n) dn
B + R X, + ply - 1) + 2
Lot (0T o fo P R2+ 32{2ﬂ2+m-252103M——~+1+
x(y +1) %y -1) 8 Blyr+l)+®  2p B
Mexo By -1) +Rp 2 1, #il + R k(
- AR % +R ., EF+ L))
; logﬂ(y+l)+R1 2p (7' 2+2)+ﬂ(y+l)|}ogﬁ(y+l) log 5 ]
2, %o +Rp . kG - 53k MPxo® . Bly - 1) +Rp
A T R A e R N SR
2 _, -
L E}r - 1Ry - (¥ + l)R-_]] + £ 3a0x P - )'—"MBQ(EME - 3)(3y2 +1) -
2 9636 3
+ + R 2 -1 R
2[36(y - 1)3193 %o * Re + 2[36(y + 1)3log o L e (ME + h) xOBlog By ) + R +

M+ 1)y - 1) (M-t-l)(y-l-l)_ B Bly +1) + Ry

(2 -‘h-ME —li-liij‘t)xc,[(y-‘l)Rz- (y-s-l)R]J +i36[(y+1)3 - (y-l)ﬂ(—27+%+%-ni) +

Eﬁe(y _ 1)3109; Ejz_e-__l)_ - 288(y + 1)%108 k(y; 11}+ ESB{'&'Pb + 48)xg) -
360B

H69¢ ML YOVN

(Equation continued on next page)
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16;38y(y2 + 1) + 2B [(y + 1)t -1 ”'} ‘ (31)

where

Ry = [xg° + 82y + 1)° R2=¢Q2+¥@-1F

xon:x-x.v 7”0'5772157

where Xp = X - Xy 18 the distance from the line of integration to a control point, made nondimen-
slonal by dividing by e, and is positive for locatlone of the control point hehind the line of
integration., The distance y 18 alsc nondimensionalized by € and is positive to the right and
18 measured from the cepter of the integration segment as previously dlscussed. The reduced
frequency k mnust also be based on the span segment € and is accordingly

k-?

Of course the number of spanwlse segments N can be arbitrarily chosen. In general, the more
segments taken the more accurate the result. Fallmer (ref. 25) has used ¢ = 8/20 for most cases.
As an example, the layout for s rectenguler wing as used in the numerical exsmple in eppendix A is
ghown in figure 1.

62

The next section of the peper is concerned with the application of the surface-loading method
to the special caese M = 1.0,
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THE SURFACE-LOADING METHOD FOR SONIC FLOW

The problem of calculating the forces for the limiting case of a
wing which is oscillating in sonic flow 1is in general the same as for
a wing at subsonic speeds with two exceptions. First, for the case of
a sonic trailing edge, that 1s, when the tralling edge 1s perpendicular
to the flow, the satisfaction of the Kutta condition (Ap = O at trailing
edge) is no longer necessary and another form of the series expansion
for the loading Ap is applicable. (For the subsonic-trailing-edge
case, i.e., when the trailing edge is not perpendicular to the flow, the
loading series would, presumably, be of the same form as already shown
for the subsonic case as given in egs. (5).) The second difference
between the sonic and subsonic cases lies in the form of the kernel K,
vhich is used for the calculation of the downwash factor F as defined
in equation (27). The modification of the kernel K +to the limiting case
M =1 has been performed in reference 24, but the integration of the
kernel with respect to the spanwise variable 1 must still be performed
and is presented in another part of this section.

The present method is based on the usual assumptions of linearized
theory and the use of this approximate theory may be open to question.
However, for the very thin wings now being used on aircraft, it is
felt that the first-order effects as given by lineer theory constitute
the major_ effects for umseparated flow and adequaete solutions will be
obtained.t

lsome conditions which must be met in the linearization of the
governing equations in the neighborhood of M = 1 have been presented
by Miles (ref. 36) and Mollo-Christensen (ref. 37). As stated by Miles,
it is required that the conditions &, Md, kK5, KMB << 1 be satisfied
and, in addition, that one or more of the following conditions be met:

|M-1| >>82/5 k>>z52/3 %» 51/3

where 8 1s the thickness ratio, M 1s the Mach number, k 1s the
reduced frequency, and A 1s the aspect ratio.
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For the case of a sonic trailing edge the form selected for the
loading is

o _8 [ 1
E--—_F 2—1‘12g_fzeaoo+a.01n+a02n2+ooo)+

N T I R (R A Ll (P

8..211]+8.22'f]2+...)+... (52)
or
Ap _ 8 [es] <] .
a EEA; Z;O 2ty (E-£1¢) em(n)J (33)
where
n-x
fné~f7’e) ) (g ) f'l.e) 2 (n=0,1,2 ...)
and

g,(n) = M \s® - 12

This series contains some aspects of the supersonic case as well
as the subsonic. For instance, as in the supersonic case, the loading
is not zero at the tralling edge; whereas, as In the subsonic case, the
loading becomes Infinite at the leading edge.

Treatment of Integration in Chordwise Direction

By following the scheme used for M <1, a set of simultaneous
equations for the chordwise replacement loads is obtalned corresponding
to equations (15) and (16).

In calculating the values of the replacement loads, it 1s convenient

to choose the semichord st some spanwise station as a reference length,
as was done for M < 1, and to perform a coordinste transformation such
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that the origin lies on the wing midline. By such a transformation a
new chordwise loading function £,(t) can be defined as

£ (6) = (1 + g)n% m=0,1,2, ...)

where £. 1s now considered as a dimensionless variable based on a
reference semichord and measured from the wing midline. In terms of
this new variable £, the equations expressing the loading conditions
(corresponding to egs. (15) in the subsonic case) appear as

1

—

J 1 n
Sgn=[ +e) Za (31)
v=L -1 .

and for the downwash condition (corresponding to egs. (16) in the
subsonic case)

J — xg n-!.é‘ —
S 6%, - f Sy fRga (35)
v: —~

where the functions ng and Kgg designate

Kyy = K M,k(xg—xvil o

Ky = ’K[M,k(xg-g)] Ml

and are the two-dimensional kermel as defined by equation (B23) of
reference 2t and given in appendix B by equation (B9). Unlike the
two-dimensional kernel for the subsonic case, these fumctions are not
tabulated for M = 1 and hence must be calculated.

In expanded form snd for the nth chordwise-loading term, the set of
simultaneous equations is
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1 N
Gip + Gpp + Gzp + CGyp =f £a(6)at
-1

—_ — _ - 1 —
Cnfn T e * GBnKlB * G K -jj_ fn(g)Klé at y 56)
3

— — — — ) —
Gingél + Gy Kpp + G3nKé3 + Ghnxéh =\jC1 fn(g)KéE at

CynKsy + Copksp + G3pfsz + Gy Ky =/j3 fn(g)iﬁ dg )

A set of simulteneous equations ds given by equation (36) must be Formed
for each value of n and solved for the. associated values of Q.

As in the case of subsonic flow, the integrends of the integrals of
equation (36) become infinite at ¢ = Xg. The evaluation of these

integrals is discussed in the latter part of appendix B.

At sonic conditions, a disturbance cannot be propagated upstream,
so that the labor of computing the loading functions is reduced as
compared with the case for M < 1 since the downwash factors do not have
t0 be determined and summed for conditions where the control point is
upstream of the integration area.

As an example, if the loading functions are assumed to act at the
1/8-, 3/8-, 5/8-, and T/8-chord positions and the control points are
located at the 1/4%-, 1/2-, and 3/t-chord positions, then

Kip = K3 = Ky =Koz =Ko =XK3), =0

since the terms represent downwash factors for control points ahead

of the loading stations. Thus, the set of equations becomes triangular
and can be solved by successive substitutions.

Treatment in Spanwise Direction
The integration in the span direction is carried out in the same

manner as was done for M < 1, that is, the wing is divided into many
small segments, and, with the load Ap assumed to be constant across




the segnent the in‘begration is perfomed. The kernel for this case 1s given by equations (47) in
reference 24, However, it is not possible to integrate this expression for the kernel in closed form
end, as was done for the case when M < 1, the kernel wes expanded in powers of the frequency param-
eter k and integrated term by term. The concept of the principel part of a finite Integral was
used. The form of the Integrated serles is given In the following egquation:

1
= tont t
Ry f X K toxg, Ky )] @

1kx

- 20[ L i ik ( 3¢ 3 3 ':';‘
= 2e 1y+l—y_l+xo+—§l_b"+l) -Y"l)_l ).1.0:{0 I_(Y"'l --l)_[...

(y + 1) -y—l)7 +———y+l)9 y-l)9}+e~ibr° (1 - l>+

2688 L|.[- ] 3#56030[ ] - y-1 yv+1
2 2:-:) x,2 )

k i Q 0 1 1 2 2
2—[%(‘1-7-54_103 =) - 2(\3-‘1_y+l, - (7 + L)logly + 1)° + (v - L)1og(y - 1) +

3

2(y+l)~2(y—l)}+——5xo-§ﬁ—(yj_'l yil) lulco(:,wl)5 y—l)ﬂ

4 4 5 2
k 3 3 x [ 1 1 y+1)2 - g - 1)
= - - 1l - - -6 -

96'{(3 2y :r)[(wl) 1)] xo+ac,_1 y+l> iy

os'd
2'71:.:.1\3_(v_l\ﬂlvg.__o._Dl-{:}r-l.l)z’log(}r-l-]_)z...(y-l)al_g(}r-l)e-g—(yd-v'l\j-h
\J / A\ IJ k L 5
3 5 5
2 _ 3] _27 xg 3 ey L 17 - G -1)d
50 - 1) }+:m5 288 +192Ey+1) Gy 1)]+ TBone

11+1)7-(y-1L+ 1 1) (37)
8,06k, 1,956{;-1 ¥+ 1
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vhere the parsmeters x,, ¥, Kk, and 7 are identical to those
employed in equation (31).

REMARKS PERTINENT TO THE SURFACE-LOADING METHOD

In previous sections of this paper, some of the approximations
involved in the present lifting-surface method have been discussed. It
has been pointed out that certaln arbitrary features arise in performing
the numerical evaluations of the integrals, particularly with regard to
the chordwlise integrations. The assumptions that have been masde in this
connection include the replacement of the continuous chordwise loading
by a number of individusl replacement loads, the use of the two-
dimensional kermel function in evaluating these loads, and the choice
of e set of loed stations at which the replacement loads are assumed to
act. In addition, a set of control points must be selected at which
the governing downwash conditions are to be satisfied. In the actual
gpplication of the procedure these features give rise to certain problems
which are discussed in the following paragraphs.

Control-Point and Ioad-Station Location

No attempt has been made in thls paper to determine the most favor-
able location of the control points or the optimum location for the sta-
tlons at which the replacement loeds are assumed to act. For such a
study, systematic tables of the downwash factor are desirable and when
these tables become available, it will be much easier to evaluate this
aspect of the problem. In the present study, such tables were not aveil-
able, and the positions of the control points and the means of distribu-
ting the loading selected were the same as have been used for the steady
case. It 1s felt that, at least for the simple rigid modes considered
in the present study, the location of the control points is not critical.
For more complicated modes of deformation other locations and additional
control points might be necessary. This question is worthy of further
study.

Effect of Taper -

In the calculation of the distribution of the lodding across the

bw
chord, it is necessary to select a value of the reduced frequency k = 7

to be used in calculating the two-dimensional downwash factors Eév and
Rég in the integrals in equations (16). For a tapered wing, the problem

arises as to what span position to use to obtain a reference chord for
calculating k.
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In relation to this effect of taper, as a part of the present
investigation, two separate calculations were made for the case of a
45° delta wing. In one case, the root chord was used as the reference
chord, whereas, in the other, the chord at the midsemispan was used.
It was found that the finsl results obtained for the pressure distribu-
tion and, consequently, for the 1ift and moment from the two calculations
were almost identical. On the basis of this one test case, 1t may be
inferred that the location of the reference chord is not an  dmportant
factor. In the remainder of the delte-wing calculations presented in
this report, the chord at midsemispan was used.

DISCUSSION OF SOME APPLICATIONS OF THE METHOD

T™is section is concerned with a discussion of the results of cal-
culations which were based on the lifting-surfaece method discussed. .
Calculations have been made for both rectangular and triengular wings
and comparisons of the results have been made with existing theoretical
and experimental results where possible.

Rectangular Wing

In order to furnish a basis for comparison of results of the method
with existing theory, calculations have been performed at M = 0 for a
rectangular wing with an aspect ratio of 2 pitching about the midchord
for various values of the reduced frequency k. The results are compared
with the results given by Lawrence and Gerber (ref. 29) and are shown
plotted in figure 2. In figure 2(a) the magnitudes are plotted, and in
figure 2(b) the corresponding phase angles are plotted. Excellent agree-
ment is obtalned for both the magnitude and the phase angle. Although
both the present method and the method of Lawrence and Gerber are approx-
imate, the good agreement between the results promotes a feeling of
confidence in both methods. It should be noted that the two methods
are not similar end contaln entirely different approximations.

To obtain some effects of Mach number, calculations were made for
the same rectangular wing with aspect ratio of 2 pitching about the-
midchord for a range’ of Mach numbers at a constant value of k = 0.22,
Results are shown in figure 3. TIncluded in the figure are the results
of two-dimensional calculations. The magnitudes of the 1lift and moment
are given in figure 3(a) and the corresponding phase engles are given
in figure 3(b). Cealculations for three-dimensionel flow up to and
including M = 1 were made by the use of the surface-loading method.
The results at supersonic speeds were obtained from reference 12. 'The
variation with Mach number for both the 1ift and moment is approximetely
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that vhich would be predicted by use of the factor $/1 - M2 up %o
M = 0.7. Both the moment and 1ift increase at M = 1 and then drop
off again at supersonic speed. Note that the two-dimensional 1ift
coefficient has the same shape for the range up to M = 0.7 and that
FrE -5 vould
apply fairly well. No such simple factor exists for the phase angles,
and 1t would not be possible to correct two-dimensional results for
finite spen effects.

application of the aspect-ratio correction factor

Triangular Wing

Figures 4 and 5 present results for a delta wing with an aspect

ratio of It oscillating in pitch about the midchord. In figure L is

shown the 1ift and associated phase angles plotted against the reduced
frequency k for M = 0. Resulis of the present analysis as shown by
the solid line and those of Lawrence and -Gerber (ref. 29) as shown by
the dashed line are compared with some experimental results (indicated
by the circles) obtained by Summer A. Leadbetter and Sherman A. Clevenson
at the Langley Aeronautical Laeboratory. It is noteworthy that the results
of the two methods agree rather well, even with respect to phase angle.

In figure 5 a corresponding comparison for the moment and its asso-
cilated phase angle (for the same wing and for the same conditions as in
figure 4) is shown plotted against the reduced frequency k. Results of
both anaslyses are in substantial agreement with respect to the magnitude
of the moment. With regard to the phase angles, a significant difference
between the results of the two theories occurs, although both theories
indicate the same trend. The source of the difference can not be
explained at the present time and will have to be resolved by further
calculations and experiments.

Results of Multiple-Line Method

Figure 6 shows results of calculations for a rectangulsr wing with
an aspect ratio of 2 at M = 0 based on the multiple-line method
described in appendix D. Results of the line method approach those of
the surface-loading method when a fairly large number of 1lifting lines
and control points are used. These results are discussed more fully
in appendix D.
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CONCLUDING REMARKS

The purpose of this paper has been to present and describe In
detall a method for calculating the loading on a wing of any practical
plan form which is oscillating in a subsonic or sonic stream. The
method is presented in genersl form and some results of gpplication are
discussed. A sample calculation for a specific case is presented in an
appendix. The method may be used for calculating the loading on elastic
wings as well as on rigid wings. This feature makes the method adeptable
to flutter calculations since it is possible to calculate the loading for
the various modes usually assumed for a normal type of modal flutter
analysis. The method can also be applied in principle, at least, to the
combined aerodynamic snd structural problem in which the flutter char-
acteristics are obtained directly by the use of structurel and aerody-
namic influence coefficients.

The procedure used is based on linearized theory in which the usual
assumptions of linearized flow, such as small thickness ratio of the
wing, inviscid fluid, and so forth, ere necessary.

The method has been found to give good agreement with exlisting
theory and experiment for low subsonic Mach numbers for both rectangular
and trienguler wings. Results for high subsonic Mach numbers and a Mach
nunber of 1 £it in well with theoretical results for supersonic flow but
require further verification by comparison with experiment.

In addition to the presentation of the lifting-surface method, a
multiple-line approach 1is included in an appendix. Results of ‘the line
method epproach those of the surface-loading method when a fairly lerge
number of 1lifting lines and control points are used.

It is realized that several variants of the procedure may be made
and may be desirable for routine or systematic calculations, particularly
in view of the constantly increasing capabilities of automatic computing

equipment.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Lengley Field, Va., March 14, 1956.
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APPENDIX A

NUMERICAL EXAMPLE OF THE LIFTING-SURFACE METHOD
FOR A RECTANGULAR WING

(A =2; ¥k =0.22; M = 0.5)

As an illustration of the calculation procedure of the 1ifting-
surface method, the detalls of the procedure are presented in this
appendix for a rectanguler wing with A =2 and k = 0.22, which is
oscillating as a rigid wing about the midchord line in a stream flow
of M = 0.5. For the case of subsonlic flow the main equation to be
dealt with is equation (30a) or (30b). The steps in performing the
calculations are as follows:

(1) The first step in the process is to divide the wing into a
number of areas as shown in figure 1, to select the number and location
of the control points, and, consequently, to determine the number of
terms of the loading series (egs. (5)) which are to be retained. For
the present case, the wing was divided into four equal chordwlse areas
for the celculation of the distribution of the load In the chord direc-
tion. For the spanwise integration, the wing was divided into 21 seg-
ments of which 19 are segments of span 2¢ and two (one at each +tip)
are of span €. The semispan ¢ of a segment is thus equal to one-
twentieth the wing semispan. (In all of the calculations this quan-
tity € 1s used as a nondimensionslizing factor so that the full wing
span becomes 40 units. For a wing with A = 2, as considered in this
example, the chord is therefore 20 units and extends from -10 at the
leading edge to 10 at the trailing edge. The reduced-frequency param-

eter k (based on the half-chord) in terms of € becomes E = %? = s;

and for this example k = 0.22 and k = 0.022.)

Nine control points located at the 1/4-, 1/2-, and 3/li-chord posi-
tions and at three span stations 1 = 0.2, 0.5, and 0.8 of the wing
semispan were selected. The selection of nine control points determines
the minimum number of terms of the loading series. There can be more
control points than terms of the loading series; however, a method of
least squares would have to be employed for the final solution.

In the present example, nine terms were retained in the loading
series. Three chordwise terms, each modified by three spanwise terms,
were used so that the series contains nine unknown coefficients 8y and

appears as




o

é:i = %Jgg - 1]2 [co-b %GOO + aoe'qz + a.ol{‘nl'> + gin e(a.lo + 5.12112 + a.lhn‘j + gin 29(&20 + a22n2 + aehnh‘}}

(1)

I+ is only mnecessery to comslder the even power terms in 1n since the loeding is assumed to be sym-
metrical In the span direction about the midspan position,

(2) ™e next step consilsts of calculating the replacement loads G from equations (17), (18),
and (19). For the present case, there ere three (n = 0, 1, or 2) sets of four simultaneous equatloms
aB follows:

Gy + Gpp + Gap + Gy, = ro(e)ag 1

(-2.83500 - 0.450001)0,, + (2.25500 - 0.L476801)a,, + (0.60680 - o.2~5)6'r01)u5]|1 + (0.29180 - 0.220861)0), = frn(;)’ﬂu ag
(A2)
(-1.17430 - 0.217604)6y, + (~2.83500 - 0.450001)@,, + (2.23500 - o.h76801)u3n + (0.60680 - 0.296701 )Gy, = ffn(g)E215 as

(-0.83000 - 0.0%037L}G,  + (-1.17430 - 0.217601)a, + (-2.83500 - 0.11-50001)G5n + (2.25500 - 0.476801)0, = frn(g)ﬁ'ﬂ as

The coefficienta of the replacement loads G are values of the two-dimensional kernel ’Eﬂm end

have been obtained directly from the table of referemce 31. The kernel Kpn 18 & function of M, and
7 = k(x - £). Consider as sn example the center of aree et 1/8 chord (g = -%9-) and a comtrol point at

l/ll- chord (x = -5), For Xk = 0,022, Z = (0.022) \...5 + 1_0 = 0.055 and for M= 0.5

. the downwesh
C.UDD M y LOEC dOoWnwesh

factor Ell = -2.83500 - 0.450001 mey be read from the tsble of reference 34t. Similarly, for the

same velues of k and M and for the center of area at "{/8 chord (g = 1—0) end the control point at

midchord (x =0), Z = 0.022(0 - -13) = «0.165 and, therefore, ?&2 = 0,60680 -~ 2967041,

The imtegrals on the right of equation (A2) are given ae follows for the three set

quations
corresponding to n = 0, 1, end 2, (See appendix B for discussion of method of inte

H69C NI VOVH
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For n =0, f£,(¢) =cot-g— and

0

0

1
cot

N |
I
Ita

0

6 —
L/:(cot§1%§ sigede

19

f cot-g-sinedﬁ::t
Tt 9 —

f cot §K1§ sin 6 46

sin 0 46

= -2.88354 - 1.341251

-2.9750% - 0.961371

I

-3.0307% - 0.573201

For n =1, fl(§)=sin9 and

0

o, =
sin<e de
Jy e
[ ot
sin=0 de
0 Kag

f« 8in<e Kze do
0

7C
f sin20 do =%

0.58912 - 0.63606i

-0.45095 - 0.67032i

-l o)'l'85}+7 - 00553661

L

(a3)

(Ak)
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For n =2, f5(t) = sin 20 and

T
JF 8in 260 sin 6 46 = O
o

ﬁ N —
J/\. sin 26 sin © Kig de =--1.03882 - 0.206311

° > (85)

T
L/h sin 26 sin © Kpy 46 = -2.0299% + 0.041451
0

1§
sin 20 sin © K., 46
\/; B3¢

The values of G as computed from the three sets of simultaneous
equations formed by substituting equations (A3), (ak), and (A5) into
equation (A2) are

-1.02892 + 0.288611

J

Go = 1.7218% + 0.002241 )

GEO = 0.73737 - 0.0113041

Gzp = 0.44052 -~ 0.00u8k41

Gyo = 0.24186 + 0.013891
G, = 0.30752 + 0.022411
Gy = 047670 + 0.005821 | (46)

Gzp = 0.47702 - 0.005831

Gyq = 0.30956 ~ 0.022401
G 5, = 0.4574k + 0.011031
G,, = 0.23804 - 0.010551
Gzp = 0.23755 - 0.010731
Gypo = -0.45795 + 0.010241 |

When the velues of G are obtained, the loading function AP, (1)

appearing in equation (30a) and defined by equation (26) may be written
as
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AP, () = YenpVe V1 - 'ue IE}VO (8'00 + ao,éle + aob,“h) + le (810 + 312"12 +
| alh“h) + f}ve Geo + oy + aelp“h):l (A7)

vhere v =1, 2, 3, or 4 corresponding to the 4 areas in the chord
direction.

Examination of this equation shows that certalin products of

Gv np.m 1 - p.e are needed. These products correspond to the products
gm(u)Gvn in equation (30b). Tt has been found convenient to arrange

these products in a certain form for later calculations. This form is
shown in table IT where values of the products are given for the complete
system of replacement loads.

(3) The downwash factors F must now be determined. These factors
may be calculated by the use of equation (31) , which was used for this
exemple. With the adaptation of high-speed computing machines to the
problem, the kernel in the form of equation (20) of reference 24 may be
nunerically integrated without, perhaeps, the frequency and Mach number
restriction of the series. However done, the distance between the centers
of areas and the control points, x5 and y', must first be determined.
For the present case, the y' distances for control point 1 and the
first chordwise area corresponding to g = 1, for example, are

vl 0 | 0.1 '0.2 0.3 |o.k | 0.5 | 0.6 |O.T |0.8 |0.9

y'R I 2 o] 2 L 6 8 10 12 1k
y'L - 6 8 10 12 1k 16 18 20 22

The distance x = 2.5 18 constant since the wing 1s rectangular.

Since the loading in the exasmple is symmetrical about the midspan,
the loading factors which multiply ¥ i1n equation (30b) are the same
for equidistance on each side of the mldspan. Therefore, the values
of ¥ which are located at equal distances from the midspan may be
camputed and added before multiplication by the loading; consequently,
distences y'gp eanmd y'y have been given in the example where y'y

refers to the distance from a control point to the centers of the areas
to the right of the wing midspan and y'L refers to distances to areas

to the left of the midspan. The final form of the F factors is given
in table IIT where, for each entry, the two values of F for - y'R and

¥y'y, bhave been added.




elements.

the wing.

coneldered.

(4) The next step 1s the multiplication of the loading fectors of taeble IL by the downwash

=y

(1.07T13 + 0.181564)agy + (-0.03279 + 0.09589L)ap + (0.33112+ 0.0k129L)apq + (-0.14363 + 0.C43BTL)ag, + (-0.0951L + 0.01k654) 8o + )
(-0.02878 + 0.00T164 )y, + {-0.0Thkg + 0.016051 )8y, + (-0.02325 + 0.000884)e,, + (-0.01569 + 0.002621 Ja,, = -(0.023 - 0.002751}2x
(1.292% + 0.023391)8,5 + (0.27197T + 0.088131)n,  + (0.60508 - 0.038421 )0y + (-0.2L9%% + 0.,061T31)ngy + (-0.08523 + 0.022081)e;p +
(~0.0%183 + 0.009211)any + (~0.10617 + 0.027581)agy + (-0.03939 + 0.009244)ayy + (-0.0058% + 0.00A3hi)ay, = -(0.025 + O1)ex

(1.26568 . 0.123834)a, + {0.608%2 + 0.C31821)a 4 + {0.32497 - 0.104811)a,, + (-0.265Th + 0.087921)a, + (-0.11481 + 0.0330kt)e,, +

(=0.02668 + 0.011TT4)egn+(-0.12608 + 0.0A0L34)agy + (-0,05309 + 0,0U44Ti)agy + (-0.0A4T3 + 0,006151)ag, = -(0,025 + 0.00@T51)2x
(0.90622 + 0.110761)ag, + (0.0L456 + 0,066721)n), + (0.2T74 + 0.02HH )ap, + (0.95139 + 0.00481)e,, + (0.11217 + 0.022721)s, , +
(0.25599 + 0,003531)a,, + (0.65180 - 0.00TSL)ag, + (0.0H28 + 0.002281)ay + (0.17638 + 0.00L161)ay, = -(0.023 - 0.002754)a1

(1.11504 - 0.009621 )80, + (0,20857 + 0.082%k1)a1n + (ORTBT8 - 0.054100)ang + (1.24921 - 0.130001)ag, + (0.57620 - 0.00132i)ap +
(041633 - 0.04RT1L)ay, + (0.86538 - 0.096661)%' + (0.26893 - 0.00k501 ), + (0.28078 - 0.029TTi)ag, = ~(0.025 + oi)2x

(1.3342 - 0.156841)a,, + (0.56650 + 0.0m261)e,  + (0.26664 - 0.08806L)ey, + (142203 - 0.261891)ag, + (0.635TR ~ 0.060631)8y5 +
{0.25104 - 0.&8}81)&22 + (0.99606 - 0.200EH Jay, + (0.bhaly - 0.0M5931 ),y + (0.17013 - 0.050%1)32,‘ = -(0.02% + 0.002T9i)ex

{1.01349 + 0.15TT2L )y, + (-0.05008 + 0.085T31)ay, + (0.3091 + 0,035801)ap, + (0.25605 + 0.055k21 )8y, + (-0.00435 + 0.019791)8, 5 +
(0.07656 + O.Wi)n@_ + (-0.0n884 + 0.025251)1@' + (-0.020%9 + 0.0079'{1)3.\“}[ + (=0,009%k + o.ooh#ei)aa,lT = =(0.025 - 0.002751)2x

{1.177164 + 0.009751 Jay, + (0. 27505 + 0.074814 )8, + (0.56079 - 0.033814)a,, + (0.2020% - 0,000524)ay, + (o.0723% + 0.m661L)e, , +
{0,153788 - o.ooﬂTm)aaz + (-0.09262 + o.czasn)am + (-0.0%866 + 0.011351)51h + (-0.004T9 +,0.005931)n.3h = -{0.025 + 01)&x

(1.2 - 0.151251);00 + (0.50649 + 0.0ﬂ.&ri)u._m + (0.30293 - 0,098261)ay, + (0.31639 - 0.037201)agy + (0.14820 + 0.003211)ay 5 +

factors F of table IIT in accordence with equation (30b) which results in a 9 by 9 matrix of complex
This 1s given by the left side of the following equation amd the downwash conditlons to be
discussed subsequently ere shown on the right of the equation:

(0.07h9 - o.maiw.-zi)um + (0,119 + 0.050074 )0,y + (-0,0n853 + o.cn1€-o=:.1)am + (-0.00800 + o.oohoai)na = {0,025 + 0.00275L)2«

(5) T™e boundery corditions w st the various control points are determined from the motion of

For the present case, oscillations about the midchord line of a nondeforming wing are

H69¢ NI VOUN
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Since f(x,y) = a(x - a) and, according to equation (3a),

of (x)Y) + of (x,¥)
ox Jt

W(x:y') =V

w(x,y) = -Ech, + alx - a)]

and for harmonic motion

w_(z_;L)=_[;!_+ik(x—a§] (a9}

It is convenlent to divide the simultaneous equatlions by the factor
40/2r which appears in equation (30b). Therefore, the downwash condi-
tions for rotation sbout midchord (a = O) are

W(.’L‘lf;yl) - W(x’;;yhl - w(x;(r;y"f) = -(0.025 - 0.002751)21J

w(xa,yg) _ w(x5,y5) _ w(x8,y8) _
Vo @ Vo 0 Vo o (0.025 + o1)2x L (A10)

V(5iYs) V(%) (oY)

-(0.025 + 0.002751)2x]
Vo Va Vo ( 2 210 )

-

vhere xi and y; are the coordinates of the control points.

(6) By the use of the boundary condition W/Va,, the set of simul-
taneous equations (egs. (A8)) may be solved for a,,. For the example

considered the values of the 8m 8&re

8gp = -0.150858 + 0.0534381 |

a9 = 0.045628 - 0.1291621

8sg = -0.000862 - 0.008337i

agp = -0.034965 + 0.007107i

a, = 0.05753% - 0.0316151 (a11)
85p = 0.014221 - 0.00%922i

8y, = -0.025231 + 0.0038601

&), = 0.058109 - 0.0061981

ap), = 0.045049 - 0.0077291
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(7) These coefficients msy be used in equations (5) to detexrmine
the pressure distribution and, in turn, to obtain section forces, total
forces, and so forth. The total 1ift and moment, for example, are
given by equations (8) and (9) and for the sample case are

Cp,qof = 2.632 By = 19.43°

t4

(a12)

M,o] = 1.59% By, q = 349.14°
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APPENDIX B

TREATMENT OF CERTAIN INTEGRALS WHICH CONTATN SINGULARITIES

THAT ARISE IN THE CHORDWISE INTEGRATION

In the treatment of the chordwise integration in the surface-
loading method, certain Integrals arise which contain singularities
(egs. (16)) and which must be given special treatment. In the deter-
mination of the coefficients G, eappearing in these equations, it is

necessary to evaluate Integrals of the form

I, = Lhord £, (E)K,, dt (B1)

where fn(g) ls the nth typical chordwise pressure mode in the

serles_expression for the continuous pressure distribution and

Kgg = KEvI,k(xg-g)] is the two-dimensional kernel fumction. In this
equation, the kernel function becomes Infinite at ¢ = Xg 80 that the
Integrand is singular. In the following sectlons, the methods of eval-
uating the integrals and taking care of the singulerities are discussed.
First the case of.subsonic flow and then the case of sonic flow is
discussed.

Case of Subsonic Flow

For the case of subsonic flow, the integrals occurring In equa-
tions (16a) and (16b) are

- 8 e
I, = /: cot 7 sin 6 Kg§ ae (B22)

J-t ’
I =f sin no sineﬁggde n=1,2,...)(BD)
0

Since the kernel in the integramds of Ip and I, becomes singular
at & = Xgs it is necessary to separate the kernel into singular and
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nonsingular perts. The singular part can be integrated in closed
anelytic form. The nonsinguler part can be handled roubinely and
accurately by numerical means. The separation of the singularity has
been accomplished by Schwarz (ref. 3%) in the following menner:

KM,2) = [% F(M) + iG(M)logeIZﬂ + K (1,2) (B3)

Wwhere
Z = k(xg—g)

The singularities now appear only in the quantity in brackets, and the
nonsingular part Kl hes been tabulated by Schwarz (ref. 34). Substi-

tuting this expression into the integral of equation (B2a) gives
(a.f‘cer setting £ = -cos 6 anmd X, = -cos 90)

j: cot -g- sin 6 XK(M,Z)ae = f: (L + cos e)’ﬁl(m,z)de +
f (1 + F(M) ]
cos 8) + 1G(M)loge |2|| a0 (B4)
0

The first integral on the right-hand side of equation (B4t) must be
evaluated numerically. The second integral may be found analytically
and has the following value:

f (1 + cos e)[ F (M) + 1G(M)1oge]ﬂ = ’ki FM) + 1G(M) [—-n: loge 2 -
0

% cos 6, + 7 logg k:] (B5)

The treatment of the integral of equation (BZ2b) for n = 1 proceeds
in a similar mammer to yleld
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b1 _ T
f sin®0 K(M,Z)de = f 5ine Ky (M,2)as - ’i F(M) cos 8, +
0 0

-j=2?1 G(M) (—loge 2 + JE cos 20, + log, k) (B6)

Correspondingly, for n = 2,

7
— = T
fo sin 26 sin 6 K(M,Z)de =/;“ sin 26 sin 0 K, (M,2)d6 - k—F(M) cos 26,

cos 38
lé’-t— G(M) (—To— - cos 90) (B7)

Case of Sonic Flow

For the case of sonic flow, the form of the series expression for
the chordwise loading and also the form of the kermel function differ
from those of the subsonic case.

For M =1, the set of equations to be solved for the chordwise
loads Gyp is given by equations (34) and (35). In equation (35),
integrals of the following form appear:

o
In=jjg<1+g) K, at (m=0,1,2...) (s8)

At M ='l, the two-dimensional kernel function appearing in 'i',hese
equations is given by equation (B23) of reference 24 and may be written
as

]
Egg = 27\'/5 (1 + iil/g%{;z . (1 _ i).ﬁke-%%@) + iS(\/—th- (B9)

where

o =% - &

+
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and where C( —ﬁ—Q> and S< -;—> are Fresnel integrals defined by

C(a) =L/;d' cos ?é— £2a%

o 2
s(a) =f sinEZ—-dt
0

As in the case of subsonic flow, the kernel function can be sepa-
rated into singular and nonsinguler pasrts. For this purpose, equa-
tion (B9) may be rewritten as

Kt = (I_(gg - Ky ) + Ky (B10)
where

— 2

Ry = a0t ()
so that
_ _ 2/x . - 1k _ '
o -5 - Sl ) ).

1s<\/5§>]} | (s12)

The integrel I, (eq. (B8)) can then be rewritten as

Xg -z s _ Xg n-% -
= - d 1
I, \/:1 (1 +¢) (Kgg Kg§> §+f_1 (1 +¢) LR L (B13)
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The first integral on the right of equation (B13) is nonsingular

and can be evaluated numericaelly. The second integral contains a

singularity end can be integrated analytically.

found to be

For n = 0, the second integral on the right of equation (B13) iis

g dg
= Cnt
1 JT+e 1 V(@ E) (g - E)

2
C==%5 (&1 + 1)k
Z\/;< )

Correspondingly, for n = 1, the integral becomes

c g___._Md§=c N
j: Vrg - £ (= + 93

For n =2, there is obtained

Cfxg (1 + §23/2 a

-1
xg-g

C(xg+ 1)2%

(B14) .

(B15)

(B16)

(BL7)
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APPENDIX C
CATCULATION OF MOMENT ON DELTA WING

As mentioned in ‘the text, the expression for the moment depends on
the particular plen form. As an indication of the general method, the
specific case of moment on a 45° delta wing is given in this appendix.
The moment is calculated sbout a line € = 8 as shown in the following
sketch:

gl

Iﬂ—oc‘ '—+<—- & —>
o]

The expression for the moment as given by equation (7o) may be
written as

M, = aSbCy 4 =J6f(§ - 8)Ap d¢ dn (c1)
‘ S

When equation (&) is used (for a 45° delta wing) the distance of

an arbitrary point (n,f) from the line ¢ = a in terms of the vari-
able 0 is
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N L R ) 3 tan Acos 6 %o (c2)
E,-a.-:a2 an -\s -3 a.n co -a.B

Substituting Ap (from eq. (5a)) and equation (C2) into equa-
tion (Cl) and noting that

at = (8_0 121 )sin 6 46 = sb(q)sin 6 4o

results In the following:

- 1
Mu'=832bopV2:rL/0‘L/:‘/'l -1 [cot <OO + 3021] + a.oll_nll)
8in G(alo + 312112 + a__m'qh) + sin 20 (a20 + a22n2 + aaunl*):ll: tan A -

b b
(—E;(?--g-tanlgcose-as—o]sinede dn (c3)

In this exemple, three chordwise and three spanwise terms have been
retained in the serles for the loading Ap.

Performing the indicated integration in equation (03) results In the
following equation for the moment on a 45° delta wing (by meking use of

the fact that ta.nA=21;f°):

_ 842 i = __= I _ = _
My = 8s pVana.l}.oo(e g2 ll-) + 8'02(5 35~ @ l6> +
b oz ﬂ_2>+ 1 £>+ 1 ﬂ_)+
%(35 & "3 al°<6 Y A CPy

L 1 1 2
alh-(lT‘j -a 3’12) + a20<-1§ - -;_%) + 9.22(3—0- - %) + aE’-l-(jE - %)] (ck)
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APPENDIX D
DESCRIPTION OF A MULTIPLE-LINE METHOD

Since a lifting-line method of handling the integral equation
(eaq. (1)) may often be simpler than a lifting-surface procedure, it was
considered Interesting to investigate such a method and to compere
results with those obtained by the surface approach. The purpose of
this appendix is to present a 1lifting-l1ine method based on a steady-
state procedure developed by Schlichting and Kshlert (ref. 26) and to
give some resulits obtained by it.

Description of the Method

In the Schlichting procedure for steady flow the lifting surface is
divided into n spenwise strips of chord c!' = c/n, where c¢ is the
total chord. A lifting line is placed at the l/lk—chord position (c! /ll-)
of each strip end the downwash is satisfied at control points on the
3/h-chord position of each strip. This 1/4-chord and 3/4-chord location,
respectively, of the lines and control points is an essential element of
the procedure. It is a known fact that for a two-dimemsional f£lat plate

In steady Incompressible flow the exact wvalue of the lift can be obtained .

by placing & single 1ifting line at the l/’-L-chord posltion and satisfying
the downwesh at the 3/h-chord position. Schlichting and Kehlert mede use
of this fact in developing a procedure for finite swept wings.

In adapting Schlichting's method to the osecillatory case the same
placement of 1lifting lines and control points hes been used and is shown
in the following sketch, where, for example, the wing has been divided
into two spanwise strips:

-



NACA T 3694 25

Tn this example two 1ifting lines 14 and 1, are considered

thet lle, respectively, at 1/8 and 5/8 of the total chord. Two control
points are shown, by x; at 3/8c and xp at 7/8c. In the sketch & is

an anguler spanwise coordinate related to a nondimensional veriable 1
(referred to the semispan) by 7 = -cos ®.

In the original form of the integral equation given by equation (l),
the continuous pressure distribution Ap is replaced by the sum of
loadings on the individual lines. It is assumed that the loading on the
line 1, can be represented by a series of the form

Apn=pV25(anlsin¢+a s:[_n3¢+an

o3 sin 50 + . . ) (p1)

5

which contains only one variable, the spanwise coordinate ¢. Since a
separate loading function of this form is written for each 1lifting line,
the double integration of equation (1) is reduced to a sum of single
integrals. The integral equation then sppesrs as

V(x:Y) - 1
A 81th2

Ay KM,k (x-xp) ,k(y-n)| & D2
;/;Panpn (x-xv) (yni]n (p2)

where x, 1s the chordwlse coordinate of the nth lifting line, and where
K, the nondimensional form of the kermel function defined by equation (29) )
has been employed.

Vhen App in equation (D2) is replaced by the series expression in
equation (Dl), the iIntegral equation is reduced to a summation of definite
integrals multiplied by the coefficients 815 8n3s and so forth, as

follows:

W(x:}') _ pv2 Z

- — in © K(M,kx.,ky.)a
v 8tgs 4 %lj.j_s _(,b{oky‘o)n+

anB_/‘i sin 30 g(M,lmo,mo)dn ... (D3)

xo=x-]LV yo'_"y-'n
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Thils equation sums the downwash at e particular control point due
to all the 1lifting lines and the various types of loading, sin 0,
sin 39, and so forth, on each line. The specific problem is the deter-

mination of the coefficients g 1’ B 03’ and so forth. In order to

obtain the coefficients a, equation (D3) must be written for each of a
number of control points. This leads to a set of simultaneous equations
which can be solved for the values of a. At each control point +the

X
function Y .\;y) is determined from the motion of the wing in the seme

manner as in the surface-loading method.

Once the values of the coefficients aj,, ay3, and so forth, have

been found, they can be used in equation (D1) to define the pressure
distribution on any lifting line and in turn to give various force or
moment coefficients. As an example, the total 1ift on a rectanguler
wing can be obtained from the relation

_ils [F
—qsgfsApndy (D)

vhere I, is the 1ift on the nth lifting line. The total pitching
moment about an axis x = a for a rectangulsr wing is given by

CM=

Bl

1 X, -&a
-1 %—( - )In (05)
vwhere Xxp 18 the chordwise coordinate of the nth lifting line.

The main computational p:'roblem in the procedure is the evaluation
of the spanwise integrals of equation (D3), and the handling of these
integrals is discussed in the next section. ’

Evaluation of the Spanwise Infea'als

The spanwise integrations in equation (D3) are performed numer-~
ically and, since the kernel function has not been tebulated, it is
necessary to meke use of the series form of the kernel given by



3D

NACA TN 3694 57

equations (31) and (54) of reference 24. In this form the nondimensional
kernel function K appears as

\ / 2 2 4 ik
K(M,kxo,lwo) - e-ilQ{o _ X5 523’0 Xo + +
Vo2 %2 + B2y, 2 Vx5 + Boy 2

k2 (1 ) 2 k 1182
M - g1 - -
282 *P 7) - Blog 2(1 - M) 2

W - p%10g <\/ %2 + BoyoZ - Xo) '+ 0(k3) (D6)

where all distances are referred to the semispan s.

For the integrals of equation (D3) which relate to lifting lines
behind the control point (xo < 0), the products of the loaeding modes and

the kernel K as defined by equation (D4) can be evaluated at a number
of values of 1 and the numerical integrations can be readilly performed.
Vhen the 1ifting line lies ahead of the control point (xo > O) , however,

the kernel becomes infinte at 1 = y, and the singularities must be
carefully treated.
For the case Xq > O with n =y, singularities arise in the terms

A= - xo+[32y2 \ ]
+52y/ L

Extraction of the singulasrities.- The singularities of the terms A
and B can be extracted and, when combined with the loading terms sin 9o,
sin 39, and so forth, are integrable in closed form.

(o7)

B = -
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For this purpose, term A can be rewritten as

2 2 2
V¥ +B¥q + x4 2 2

A== + 5| - 35 (p8)

TP xE+ B2 | vo | o

where the quantity in brackets 1s finite for all values of 7 and where

\/x2+82y2+ 2

lim |- +

5 53 2l T 5.2

The remalning term on the right of equation (D8) contains the singularity
and will be handled enalytically.

The singularity of term B can also be isolated by writing

log 62 -y log Yo

2 2 2
2 2 2 V¥ T BV, +x
B =-§ log_(xo + By, - xo) = % ° X2 2

(DL0)

where the bracketed quantity is finite for all values of 17 and where the
remaining term can be handled emalytically.

Special form of the kernmel for the case Xg > 0.~ The expressions

for the terms A and B obtained in equations (D8) and (D10) can be
used to define a special form of the kernel function for use in the case
X5 > 0. For this case the kernel can be written as

K(M, 3o, ky ) x>0 = E(X>05%0) + K (%6057 (p11)
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The term K(xo>0,yo) is nonsingular and is defined by

e—:l_bco 22 +
Yo

,’ 2 Z“; 2
g log (,xoe + B2.Y02 - x02>+ log( Xo T 22 o ¥ x°> (p12)

K(Xo>0,yo) = IS(M,]D{O,].W’O) +

where K(M,k,xo,yo) is the form of the kernel defined by equation (D8).

The second term on the right-hand side of equation (Dll) contains
the singularities and is defined by ’

X' (xo>0,3fo) = -e"ikx°<y% + % log Y02> (D13)
o

The form of the kernel given by equation (Dll) 1s used in evaluating the
integrals of equation (D3) for x5 > O.

Performance of the spanwise iIntegrations.- It 1s recalled that for
the case Xo < O, the integrals of equation (D3) can be readily evaluated
numerically by making use of the form of the kernel given by equation (D8).
For the case xo > 0, the integrals of equation (3) can be handled by

using the special form of the kernel defined by equation (D11). With this
expression, a typical integral of equation (D3) for X5 > 0 can be written
as

1 1 '
L/:lsin mo K(M,bco,}gyo)xom dn =/i1 sin mo K(x,>0,yo)dn +

1 o
f sin md K' (xo>0,yo) dn (D1k)
-1
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where the functions K(x0>0,yo) and K' (xO?O,yo) are defined,

respectively, by equations (D12) and (D13). The first Integral on the
right of equation (D14) can be readily evaluated numerically. The sec-
ond integral contains the singulerities and must be evaluated anelyti=-
cally. Tts values have been determined for two pressure modes,

sin ¢ = \/1-112 and s1n3o=(lm2 -1)\/1-112 and are
1

f \/l - "'12 K! (xo>0:Yo) g = -e—ikxo -2t +
-1

k2 \fl - yz[(y + 1)log(y + 1) - (v - L)iog(y - 1) - 2] +

—

%2- Ji m - \/m)lo.g yo2 d'q} (D15)

and

jj -2l - e (150,70)an = et ¢ 6 %%:ﬁ +

K2 ,/1 - F(ll-yz - ]) [(y + 1)log(y + 1) - (y - 1)log(y - 1)~ 2:, +

2

k [/1 -2 - 1) -1 - Rl - l):llog Yoo an (D16)

-1
where

&y = cos—ly

For the special case of a control point at y =0 and x, > 0, equa-
tion (D15) becomes

S = wronmyon - ol - g s caeed] o
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and equation (D16) becomes

_/:i (4112 - :L) \[1 - 72 K (xo>0,-n)dn = -e~1kxo [6:1 + %(—15)} (p18)

For the case of ¥y ;4 O and x5 > O, the integrals remaining on the right
of equations (D15) and (D16) asre finite and can be evaluated numerically.

Once the integrals of equation (D3) have been evaluated, the
simultaneous equetions in terms of the unknown coefficlents sy, ay3,

and so forth, can be formed and solved in the mammer indicated earlier.
In the next sectlion application of the multiple-line method 1s made and
results are compared with those of the surface-loading method.

Applicetion of Method and Discussion of Results

The multiple-line method just discussed has been applied to the
same rectangular wing with aspect ratio of 2 which was treated by the
surfece-loading method. Calculations have been made for several values
. of the reduced-frequency paremeter k at M =0 <for the wing oscillating
in pitch about its midchord. Two sets of calculations were made, one
using two lifting lines and two control points and the second using four
1ifting lines and eight control points. In the two sets of calculetions,
the control points were located chordwlse in accordance with the 3/ll--chord
concept discussed previously. With regerd to spanwise location, in the
first set of calculations, the two control points were placed at the
center of the wing; in the second set of calculations, four control points
were at the center of the wing and four at 0.866 semispan. Results of the
calculations are shown in figure 6 as the 1ift and moment coefficients and
their assoclated phase angles plotted against k. The results of the
surface-~loading method are included for comperison.

For the calculations of the 1lift based on two llnes and two control
points, the 1if‘t magnitude agrees well with the surface-loading results
only at the lower frequencies. ZFor the four-line, eight-point solution,
results for the magnitude are approaching the results of the surface-
loading method. Lift phase angles are in fairly good agreement for all
sets of calculations.

With regard to the magnitude and phase angle of the moment, results
of the line approach with four lines and eight control points are in fairly
good agreement with those of the surface-loading method. There is signif-
icant improvement over the results of the two-line, two-control point
calculations.

In general, it appears that in order to obtain accurate results with
the multiple-line approach, a fairly lerge number of 1ifting lines and
control points must be used.




62

NACA TN %694

REFERENCES

Clcala, P.: Comparison of Theory With Experiment in the Phenomenon
of Wing Flutter. NACA T™ 887, 1939.

Jones, W. P.: The Calculation of Aerodynaemic Derivative Coefficlents
for Wings of Any Plen Form in Non-Uniform Motion. R. & M. No. 2470,
British A.R.C., 1946.

Biot, M. A., and Boehnlein, C. T.: Aerodynamic Theory of the
Oscillating Wing of Finite Span. GAICIT Rep. No. 5, Sept. 1942.

Reissner, Eric: Effect of Finite Span on the Airload Distributions
for Oscillating Wings. I - Aerodymamic Theory of Oscillating Wings
of Finite Span. NACA TN 119%, 1947.

Reissner, Eric, and Stevens, John E.: Effect of Finite Span on the
Airload Distributions for Oscillating Wings. II - Methods of
Calculation end Examples of Applicetion. NACA TN 1195, 1647.

Jones, Robert T.: The Unsteady Lift of a Wing of Finite Aspect Retio.
NACA Rep. 681, 19:0.

Kissner, H. G.: Theory of the Oscillating Airfoil of Large Aspect
Ratio. Reps. end Translations No. 53, British M.A.P. Volkenrode,

Apr. 15, 1946.

laidlaw, W. R.: Theoretical and Experimentsl Pressure Distributions
on Iow Aspect Ratlo Wings Oscillating in an Incompressible Flow.
Tech. Rep. 51-2 (Contract Noas 52-576-c, Bur. Aero.), Aerocelastic
and Structures Res. Isb., M.I.T., Sept. 1954.

Garrick, I. E., and Rubinow, S. I.: Theoretical Study of Alr Forces
on an Oscillating or Steady Thin Wing in a Supersonic Main Stream.
NACA Rep. 872, 1947. (Supersedes NACA TN 1383.)

Miles, John W.: The Oscillating Rectangular Airfoil at Supersonic
Speeds. Quarterly Appl. Math., vol. IX, no. 1, Apr. 1951, pp. 47-65.

Stewartson, K.: On Linearized Potential Theory of Unsteady
Supersonic Motion. Quarterly Jour. Mech. and Appl. Math.,
vol. III, pt. 2, June 1950, pp. 182-199.

Nelson, Herbert C., Railney, Ruby A., and Wetkins, Charles E.: Lift
and Moment Coefficients Expended to the Seventh Power of Frequency
for Oscillating Rectangular Wings In Supersonic Flow and Applied
to a Specific Flutter Problem. NACA TN 3076, 195hk.



NACA TN 3694 63

15.

1k,

15.

16.

17.

18.

20.

21.

ok,

Watkins, Charles E., and Bermsn, Julisn H.: Air Forces and Moments
on Trisngular and Related Wings With Subsonic Leeding FEdges
Oscillating in Supersonic Potential Flow. NACA Rep. 1099, 1952.

Watkins, Charles E., and Bermsn, Julian H.: Velocity Potential amd
Air Forces Associated With a Triangular Wing in Supersonic Flow,
With Subsonic Leading Edges, and Deforming Hermonically According
to a General Quadratic Equation. NACA TH 3009, 1953.

Merbt, H., and Landahl, M.: Aerodynamic Forces on Oscillating Iow
Aspect Ratio Wings in Compressible Flow. KTH Aero TN 30, Royal
Inst. of Tech., Div. Aero. (Stockholm), 1953.

Voss, Herbert M., Zartarian, Garabed, and Hsu, Pao-Ten: Application of
Numerical Integration Techniques to the Low-Aspect-Ratio Flutter
Problem in Subsonic and -Supersonic Flows. ASRL Tech. Rep. No. 52-3
(Contract No. NOa(s) 53-56%-c), M.I.T., Oct. 1, 1954.

Reissner, Eric: On the Theory of Oscillating Airfoils of Finite Span
in Subsonic Compressible Flow. NACA Rep. 1002, 1950. (Supersedes
NACA TN 1953.)

Jones, W. P.: Oscillating Wings in Compressible- Subsonic Flow.
S. & C. 2560, British N.P.L. (Rep. No. 14,336, A.R.C.), Oct. 1951.

Lehrian, Doris E.: Calculation of Flutter Derivatives for Wings of
General Plan-form. Rep. No. 16,445, British A.R.C., Jan. 195k4.

Gothert, B.: Plane and Three-Dimensional Flow at High Subsonic
Speeds. NACA ™ 1105, 1946.

Miles, John W.: On the Compressibility Correction for Subsonic
Unsteady Flow. dJour. Aero. Sci. (Readers' Forum), vol. 17, no. 3,
Mar. 1950, pp. 181-182.

Schade, Th., and Krienes, K.: The Oscillating Circular Airfoil on
the Basis of Potential Theory. NACA TM 1098, 1947.

Kuessner, H. G.: A General Method for Solving Problems of the Unsteady
Lifting Surface Theory in the Subsonic Range. Jour. Aero. Sei.,
vol. 21, no. 1, Jan. 1954, pp. 17-26, 36.

Wetkins, Charles E., Runyan, Harry L., end Woolston, Donald S.: On
the Kernel Function of the Integral Equation Relating the Lift and
Downwash Distributions of Oscillating Finite Wings in Subsonic Flow.
NACA Rep. 1234, 1955. (Supersedes NACA TN 3131.)




6l

25.

26.

28.

29.

30.

51.

32.

33.

35.

36.

37.

NACA TN 3694

Falkner, V. M.: The Calculation of Aerodynamic Loading on Surfaces
of Any Shape. R. & M. No. 1910, British A.R.C., Aug. 1943.

Schlichting, H., and Kahlert, W.: On the Calculation of the Lift
Distribution of Swept Wings. Rep. No. Aero.2297, British R.A.E.,
Oct. 1948. /

Fettis, Henry E.: An Approximate Method for the Calculation of
Non-Statlonary Air Forces et Subsonic Speeds. OAR Tech. Rep. No. 5
(ATT No. 99452), U. S. Air Force, Mar. 1951.

Lewrence, H. R.: The Lift Distribution on Low Aspect Ratio Wings
at Subsonic Speeds. Jour. Aero. Sci., vol. 18, no. 10, Oct. 1951,

pp. 683-695.

Lawrence, H. R., and Gerber, E. H.: The Aerodynamic Forces on Low
Aspect Ratio Wings Oscillating in en Incompressible Flow. Jour.
Aero. Sei., vol. 19, no. 11, Nov. 1952, pp. T69-781. (Errata
issued, vol. 20, no. 4, Apr. 1953, p. 296.)

Multhopp, H.: Methods for Calculating the Lift Distribution of Wings
(Subsonic Lifting Surface Theory). Rep. No. Aero. 2353, British
R.A.E., Jan. 1950.

Weissinger, J.: The Lift Distribution of Swept-Back Wings. NACA
™ 1120, 194%7. -

Jordan, Peter F.: On the Flutter of Swept Wings. Preprint No. 619,
S.M.F. Fund Preprint, Inst. Aero. Sci., Jan. 1956.

Van Dorn, Nicholas H., and DeYoung, John: A Comparison of Three
Theoretical Methods of Celculating Span Ioad Distribution on Swept
Wings. NACA TN 1476, 1947.

Schwarz, [L.] : Tables for the Calculation of Air Forces of the Vibrating
Wing in Compressible Plane Subsonic Flow. AAF Translation
No. F-TS-599-RE, Air Materiel Commaend, Aug. 1946.

Mangler, K. W.: TImproper Integrals in Theoretical Aerodynamics.
Rep. No. Aero. 242k, British R.A.E., June 1951.

Miles, John W.: On Linearized Theory. Jour. Aero. Sci. (Readers'
Forum), vol. 20, no. 1, Jan. 1953, p. 6k4.

Mollo-Christensen, Erik L.: An Exploratory Investigation of Unsteady
Transonic Flow. Part I - Theoretical Discussion. TACP Rep. 5
(Contract No. AF 33(038)-22184), M.I.T., Aero. Eng. Dept., June 195%.




NACA TN 369% 65
TARIE I.- VALUES OF G,
[p=0,1,2v=123§
(a) M= 0
X G0 G0 %50 )
o
0.02 [ 1.71819% + 0.0006161 | 0.736332 - 0.0006381 | 0.441765 -~ 0.0004121 | 0.245502 + 0.0004341
0.06 ] 1.719095 + 0.0014791] 0.736393 - 0.0019901i | 0.441523 - 0.0011621 | 0.244586 + 0.0016731
0.10| 1.720391 + 0.0018451 | 0.736438 - 0.0034461 | 0141159 ~ 0.0018161 | 0.243605 + 0.00341T1
0.20 | L.724451 + 0.0006TOL | 0.736223 - 0.0075211 | 0.439865 - 0.00350:04 | 0.2%1054 + 0.0098911
0.30 | 1.728509 - 0.0031311] 0.735275 - 0.0121351 | 0.438213 - 0.0037521 | 0.23959 + 0.0189981
0.40 | 1.731756 - 0.0090461 | 0.733421 - 0.0171554 | 0.436363 - 0.0039831i | 0.2:0053 + 0.0301L84%1
0.50 | 1.733788 ~ 0.0166151 | 0.730576 - 0.0224531 [ 0.434382 - 0.0038641 | 0.2:2847 + 0.0429321.
0.60 | L7344 - 0.0254521 | 0.726T06 - 0.0279254 | 0.432504 - 0.0034171| 0.248139 + 0.05679u4
0.70 | 1,733669 - 0.0352721{ 0.721815 ~ 0.0334841 | 0.430143 - 0.0026931 | 0.255966 + 0.071440o1
0.80 [ 1.731489 - 0.0458541 | 0.7215925 - 0.0390491 | 0.427886 - 0.0017121 | 0.266295 + 0.0866151
0.90 | 1.7279H47 - 0.05705141 | 0.709075 - 0.0l45621 | 0.L25536 -~ 0.0004901i | 0.279033 + 0,1021034
1.00 | 1.723123 - 0.0687551 | 0.701300 - 0.0499821 | 0.423081 + 0.0009681 | 0.204089 + 0.1177691
k Gy Gy 51 Gy

0

0.02 | 0.506807 + 0.0Q15701 | 0.478591 + 0.0004031 [ 0.478591 - 0.0004031 | 0.306807 - 0.0015701
0.06 | 0.306843 + 0.0046951 | 0.47854% + 0.0012041 | 0.478548 - 0.0012041 | 0.306861 - 0.0046954
0.10 | 0.306916 + 0.0077821 | 0.478430 + 0.0019981 | 0.478448 - 0.0019981 | 0.307002 - 0.00TT821
0.20 | 0.307109 + 0.0152721 | 0.4T7887 + 0.0039321 { 0.47802L - 0.0039281 | 0.307T79 - 0.0152761
0.30 | 0.307572 + 0.0224051 | 0.4T669L + 0.00580TL | O.LTT265 - 0.005T6TL | 0.309268 - 0.0224li51
0.40 | 0.307077 + 0.0291521 | 0.475503 + 0.0075624 | 0.476W4L - 0.0074961 | 0.311775 - 0.0292181
0.50 | 0.30663T + 0.0355661 | 0.473639 + 0.0092631 | 0.475337 - 0.0091141 | 0.315183 - 0.0357151
0.60 { 0.305858 + 0.0416671 | 0.471315 + 0.0109021 | 0.474033 - 0.0106131 | 0.319590 - 0.0419561
o.gg 0.304718 + O.0w7hThi | 0.468535 + 0.0124811 | 0.472541 - 0.0119851 | 0.325002 - 0.04T970L
0. 0.303222 + 0.0530114 | 0.465307 + 0.0040081 | 0.470852 - 0.0132241 | 0.331415 - 0.0537951
0.90 | 0.301382 + 0.05828T41 | 0.k6164h + 0.0154881 | 0.468970 - 0.0143251 | 0.338800 - 0.0594501
1.00 | 0.299211 + O. 0653091 0.4157560 + 0.0169221 | 0.46686% - 0.0152781 | 0.347131 - 0.0649531.

k Glz G22 632 ql-a

0

0.02 | 0.460172 + 0.0014461 | 0.239286 - 0.000T151 | -0.239286 - 0.0007LTL | -0.460172 + 0.000T121
0.06 | 0.%60089 + 0.0021791 | 0.239261 - 0.0021401 | -0.259261 - 0.0021541 | -0.460089 + 0.0021151.
0.10 | 0.4459955 + 0.0036651 | 0.239195 ~ 0.0035591 | ~0.239193 -~ 0.0035951 | -0.459935 + 0.0034891
0.20 | 0.459305 + 0.0074TTL | 0.238877 - 0.007074L | -0.238872 ~ 0.0072084 | ~0.459308 + 0.0068051
0.30 | 0.4558392 + 0.01139%44 | 0.238383 - 0.0105401 | -0.238368 - 0.0108241 | -0.458407 + 0.0059704
0.50 | 0.457251 + 0.01535721 | 0.23T728 - 0.0139541 | -0.237695 - 0.01kk224 | -0.457286 + 0.0130044
0.50 | 0.4558%4 + 0.0193751 | 0.236911 - 0.0L73091. | -0.236849 - 0.0179921 | -0.455956 + 0.0159261
0.60 | 0.454331 + 0.0233721 | 0.235937 - 0.02060L1 | -0.235838 - 0.0215181 | -0.454430 + 0.018T4TL
0.70 | 0.452569 + 0.0273351 | 0.234811 - 0.0238271 | -0.234665 - 0.0249811 | -0.452T15 + 0.0214731
0.80 | 0.450610 + 0.03124k1 | 0.233530 - 0.0269761 | -0.233331 - 0.0283781 | -0.450809 + 0.0241101
0.90 | 0448453 + 0.0350831 | 0.232102 ~ 0.0300471 | -0.231838 ~ 0.03169641. | -0.L48T1LT + 0.0266601
1.00 | 0.446108 + 0.0388351 | 0.230529 - 0.033030% | -0.230195 - 0.0349231 | -0.Mu6h%2 4+ 0.0291181




66 NACA TN 3694
TABLE T.- VARUES OF G - Comtinued
(b) M = 0.5

x G0 €20 850 o
0.02 | 1.728217 + 0.0008344 | 0.736335 - 0.0008491 | 0.441762 - 0.0005511 0.245279 + 0.0005651
0.04 | 1.718621 + 0.0015321 | 0.736387 - 0.0017211 0.11645 - 0.0010751 0.244937 + 0.0012651
0.06 | 1.719202 + 0.0020881 | 0.736390 - 0.0026251 0441498 - 0,0015711 0.244506 + 0.0021061
0.08| 1.719851 + 0.0025051 | 0.T36400 - 0.0035561 0.4141332 - 0.00203T1 0.244010 + 0.0030881
0.10| 1.720582 + 0.0027961 | 0.736408 - 0.0045131 0.441132 - 0.0024791 o.2431 + 0.00’+1E61
0.12| 1.721371 + 0.00294+1i | 0.736408 - 0.0054921 | 0.440915 - 0.0028961 0.242899 + 0. T4
0.1k | 1.722225 + 0.0029361 | 0.736379 - 0.0065021 0.440675 - 0.0032781 0.242316 + 0.00684l1
0.16 | 1.723147 + 0.0027951 | 0.736308 - 0.00TE4TL 0.440405 - 0.0036T721 0.241733 + 0.0085241
0.18 | 1.723962 + 0.0025641 | 0.73624k - 0.0085991 | O0.440155 - 0.0039691 0.241262 + 0.0100051
0.20 | 1.724866 +.0.002LTTL | 0.736099 - 0.0096881 0.439865 - 0.00%27h1 0.240763 + 0.0117851
0.30 | 1.728804 = 0.0013381 | 0.735006 - 0.0154594 | 0.438406 ~ 0,0054961 0.2393T7 + 0.0222041,
0.40 | 1.731636 - 0.007L79L | 0.732954 - 0.021T2TL 0.436931 - 0.0062751 0.240072 + 0.0351811
0.50 | 1.752840 - 0.0146691 | 0.729879 - 0.02839%41 | 0.435561 - 0.00670541 | 0.243313 + 0.0497681

k Gy "Gy Gx3, Gyy
0.02 | 0.306817 + 0.0020951 | 0.478588 + 0.00055TL | 0.47858% - 0.00053T1 0.306807 - 0.0020941
0.0% | 0.306838 + 0.0041821 | 0.478561 + 0.001072L | 0.478559 - 0.0010721 0.306838 ~ 0.0041821
0.06 | 0.306892 + 0.0062581 | 0.478498 + 0.0016061 0.478500 - 0.001.6061 0.306906 - 0.0062581
0.08 | 0.306955 + 0.0083201 | 0.478403 + 0.0021371 | 0.478417 - 0.0021361 0.307021 - 0.0083211
0.10 | 0.307026 + 0.0103751 | 0.478295 + 0.0026661 0.4T831T - 0.0026641 0.307160 - 0.0103781
0.12 | 0.307102 + 0.0124071 | 0.478152 + 0.0031921 | 0.478201- - 0.0031911 0.307341 - 0.0124084
0.1% | 0.307197 + 0.0A44151 | 0.477988 + 0.003T11L 0.478061. - 0.00371141 0.307550 -~ 0.0144151
0.16 | 0.307297 + O. 1 | O.4TTTTL + 0.0042801 0.4T7885 - 0.00k2791" 0.307843 - 0.0166061
0.18 | 0.307389 + 0.0183811 | 0.4TT573 + 0.00MTH3L | O.LTTT720 - 0.004TH11 0.30811% - 0.0183824
0.20 | 0.30ThG3 + 0.0203261 | 0477327 + 0.0052501 | 0.477520 - 0.0052491 0.308456 - 0.0203281
0.30 | 0.307896 + 0.0298041 | 0.475616 + 0.00T7581 076247 - 0.00T751L 0.311037 - 0.0297921
0.40 | 0.308056 + 0.0388071 | 0473175 + 0.0101231 | O.47h565 - 0.01017LL 0.315002 - 0.0387591
0.50 | 0.307875 + 0.04Th411 | 0.469955 + 0.0124401 | O.LT2ATH - 0.0125261 0.320496 - 0.0473551

k T %0 G50 &y
0.02 | 0.460170 + 0.0009581 | 0.25928L - 0.0009541 | -0.239283 - 0.0009551 -0.460168 + 0.0009511
0.0% | 0.460136 + 0.001924%1 | 0.239276 - 0.001906i | -0.239279 - 0.0019111 -0.460133 + 0.00189341
0.06 | 0.460062 + 0.0028981 | 0.239239 - 0.0028561 | -0.239245 - 0.0028701 ~0.460056 + 0.0028281
0.08 | 0.459969 + 0.0038824 | 0.23919L - 0.0038061 |-0.23919L - 0.0038511 -0.459969 + 0.003T541
0.10 | 0.459857 + 0.0048701 | 0.239132 - 0.00UT54L | -0.239133 ~ 0.0047921 -0.459856 + 0.0046751
0.12 | 0.559720 + 0.0058691 | 0.239058 - O. -0.239051 - 0.0057561 -0.459727 + 0.0055871
0.1k | 0.459570 + 0.0068711 | 0.2389T% - 0.0066431 | -0.238967 - 0.006T201 -0.4595TT + 0.0064924
0.16 | 0.459572 + 0.0079811 | 0.238861 - 0.0076T9L .| -0.238857 - 0.00T77821 -0.459376 + 0.00T4801
0.18 | 0.459211 + 0.0088961 | 0.238757 - 0.0085281 | -0.238763 ~ 0.0086501 -0.459205 + 0.0082821
0.20 | 0.459017 + 0.0099151 | 0.238632 - 0.0094641 | -0.23864T - 0.0095191 | -0.459002 + 0.0091691
0.30 | 0.45TTh9 + 0.0150861 | 0.237839 - 0.0241571 | -0.237842 - 0.01L4701 04576 + 0.0135424
0.40 | 0.556166 + 0.0203234 | 0.236761 - 0.0188151 |-0.236783 - 0.01931Ti -0.45614L + 0.0L78091
0.50 | 04542k + 0.0256231 | 0.235398 - 0.0234591 | -0.235440 - 0.0241591 | -0.h54202 + 0.0219951




TABLE I.- VALUES OF G, - Concluded

[T - .
(e} M = 1,0

X G0 G0 G30 Ayo
0.10 2.220453 + 0.0284221 | 0.93802L + 0.0881281 | 0.684779 + 0.0579301 | 0.15674T - 0.1304801
0.12 2.219995 + 0.0298811 | 0.9373T2 + 0.0576241 | 0.684637 + 0.07T0004L | 0.1%7996 - 0.1577091
0.16 2.218702 + 0.0392121 | 0.936469 + 0.0765251 | 0.683875 + 0.0924701L | 0.16095% - 0.2082051
0.198675 2,217279 + 0.0497461 0.9%5663 + 0.0564131 0.6T7372 + 0.1170371 0.169686 ~ 0.2631961
0.242825 2.215455 + 0.0593951 0.948201 + 0.1030491 0.674169 + 0.1494191 0.162175 - 0.3118611
0.286975 2.212373 + 0.0705184 0.930797 + 0.1360241 0.679618 + 0.1661381 0.177212 - 0.3726801

k 1y Go1 B3 Gy
0.10 0.277575 + 0.0053001 | 0.394836 + 0.0091531 | 0.480561 + 0.0126981 | 0.180361 - 0.0271511
0.12 0.2775L7 + 0.0063861 | 0.354828 + 0.0109331 | 0.480658 + 0.0154334 0.180330 - 0.0327521
C.16 0.277390 + 0.0083961 0.394585 + 0.0146Thi 0.480234 + 0.0205551 0.181126 ~ 0.0436651
0.198675 | 0.27723% + 0.0LOk24i | 0.394336 + 0.0182121 | 0.479269 + 0.0254851 | 0.18249% - 0.0541214
0.242825 0.277012 + 0.0127341 0.39%5992 + 0,02225g1 0.479517 + 0.0312211 0.182812 - 0.0661941
0.286975 | 0.276750 + 0.0150341 | 0.393575 + 0.0262661 | 0.479018 + 0.0368701 | 0.183990 - 0.078L701

k G1a Gop G0 Gy
0.10 0.052035 + 0.0013151 0.178118 + 0.0041181 0.342280 + 0,0082981 0,227567 - 0.0137511
0.12 0.052030 + 0.0015711 | 0.17806% + 0.0049251 | 0.342163 + 0.0099931 | 0.227743 - 0.0164894
0.16 0.05199 + 0.002091% | 0.177993 + 0.0066331 | 0.342012 + 0.0L3%051 | 0.227999 - 0.0221291
0.198675 | 0.05196: + 0.002595L | O.LT7BTT + 0.0082531 | 0.341668 + 0.0166224 | 0.228491 - 0.0274301
0.242825 | 0.051914 + 0,003170L | O.177TA9 + 0.0100561 | 0.34148% + 0.020%224 | 0,228883 - 0.0335481
0.286975 | 0.0518% + 0.0037h21 | 0.177528 + 0.0L18781 | 0.341115 + 0.0239991 | 0.229502 -_0.0596191

©69¢ NI, VOVN
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TAHLE LT~ VALTES OF THE IOVNHASH FACTORI Fp + Fp JUR TIE HINE QONTMOL FOINZS OF TEE SAMMLE OAGE (F APPIIONX A

- ——

[ = 0.3)"x = 0.25]

i | Comtrod peint A | Comtrol poimt 2 | Oomizol podmb 3 Cortrol poich % Contxwl poick 6 | Comirol podob 7 | Oomirol point 8 | Contral poink 9
0 |-0. Y 0, 2h92T+ 0, 06161 | -0. 2 0. 0,008 1+ 0.008551| -0, + 0.005061 | -0.0113% + 0.0005T1 |0 +0, i) + 0. 005!5:[. =0.035TT + 0,011,
0.1 -1 %Omuqﬂm 4.[-1 JT;Q:D.%‘L 010 +om4.% + 0,000 |-0,0861) +0 010551 +o.gﬁ§i.oom + 0.0 1] -0.0TTT2+ 0.

o.2 -ngﬁi 5, GLOB0 - o. 3.60362 - 1,067824) -0, 0. + 00,0084 | -5,03088 + 0,001 -0091 +0.00k924 [-0:11 51k + 0.02LTHL| 0.121530 + 0, 038R L
o.a %w 0872 -1 . 53055+ 0. 1. 300+ 0. 575 | -0, _-g.gg{ +4°J.$.l:§2§a Y =0,0506% +0. 1 1 agg+g.$i =0, gg'}?am 050041 -o.g;.g?g.

. [} i]|-a, +0, 1 (=0, +0. -0,0:429 . +0. 0958 +0.02094 |~ +0. - +0 2al+651 1. +0, 1
8; j %ﬁin WE& -0, ﬂm %”Ji .o.ﬁm.usaﬁ =0.08a =0.14%9 +0. =0.10705 +0.0m800¢| & mﬁ 1 %’m %5 - 0.658051 ] 5.6%50-1.
0.5|-0.05595+ 0, 010k5] -0, +0.016501 |~0.05679 + 0. 025081 -0, 3386 —0,EMT] +0.08TTh]-0.25849 +o.gg.oai 1247 +o 0&3861 -1.30h1k + 0,231 | -1.2B0GS + 0, 569861
0.7(-0.03018+ 0. -0, (FYL6+ 0.0L1H (-0, O+£E5 + 0, 015581 | -1, e J43 ~1, +0. 1|17 +0. 1]|-0. +o.% 0.IP00+0, -0,85587 + o.%
O_Z -c.ceoggw.% -0, 02658 + 0,008911 -0, 02686 + 0.Q11734| *.11316 3.561T% -0.655784 5.%3 -1 1 [-0.08321+ O, 0,10899 + 0, 01863 | -0 +0.
0,5[=0,01512+ 0.00%391|-0.0180% +0.0071kL |-0.02075 + 0. 1|-L. 0095 =1,30056 +0.202%61(-1, +0,364001 | -0, 04328 + 0, 000851 | -0. 0951 T + o.c_n.hmi -0 + 0,019

. . . o.onil-0.0 0.088151 -0, 0,000+ 0. 1]-0. +0. 1 (-0,01562 + 0,0084%, | 0,05+ 0. 1| =0,05147 +0.008k 34,

g.l -g.mu.aagt g.gﬂi :g.;mgmn:o.m -1%9?{: 0.0 1 -o.m -0.017%0 +o.mco6mi 4-% +o.moceoa 0,02666 + 0,00T1L04 | -0, O +o.w§%011901 -0, +o.cuﬂ_}6,a1
0,2[-0,13519+ 0, QLKSTL[+4, —o.ﬁi 3,50.080 - 0.6 0% 1 =0, 00541 0. + 0,008 |-0,02642 + 0008911 | -0, 03815+ o.% =0,09188 + 0, Lh921 | -0,1151k +0.01Th1
.3 ]-0,100%2 + 0.0F534]-1. +0.097944 |-1.33096+ 0. 1|-0. 653 =0, +0,007k1 | -0.05651% +0,0107T61|-0.0FTL2+ 0. ~0. 21998 + 0.8 B1 | ~0. 355k + 0. 000k L
0.4 [-0.06128 + 0.009T14 j TR+ g.% -g.g§+ g.glz?a;ri -g.oens 3 Ohaf Ig.cosesd j % +g.01l|451 j.w:g.m -t.at +g.oe.b47:. -1.30729 + 0. RME51
0.%|-0.03813 +0. 1]=0, +0. -0, + 0, 30 JOEB2L 40,0006 + 0,086 E -0, 52091
o.g : ~0.0h939 +0,ca0h g1 |-0. 0625k + 0,016304 | -0,0P315 L0385 + 0,020 -0, 2 +o.ﬁ -0. +0,010%61 |1, 8k 3%2 4+ 0, 085061 | -1, 5&1E+o 4t
o, -0.39 g’&i-a. +0, =0,05915 + 0.0 1541 [ ~0.0893% «1. 1Y +0.039184)-1.501% +0. 1 [=0.05588 + 0, 008161 | -0, +o.m1 -0, 24300+ 0,014
o.g -0, 015#1+o. 5H| -0 m+o.%§ =0.096h 2+ 0,0086911|-0,11660 . - 0.8084i| 7.96173 - 0.65501 |-0.3e00+ 0.006484 | -0, 08321+ 0. 1| ~0.10599 + 0.018894
0.9-0.01028 + 0, 003984 -0. 01512 + 0, 008594 |0, CLAE% + 0.00TIk1|-0. 08355 <1, 26093 +0,082071|~1,50096 + 0, 225864 |-0.02158 + 0005514 | 008528+ 0,009091| -0, 05817 + 0,a1k00
-0. e TIEH + 0:0060 4 [~0, 173 + 0.021511 | -0, CO%kT -0. +0.002154  -0,0033H1 +0,00€581 (=0, 00522+ 0.002151 | -0.01362 + 0, 05 -0 +0.009561

g.:l -0, mm:g:g.omsn -o.%w:cuhns -1 Jenesﬂm.ogqpm -0.00709 -0, mmBaT + 0,00k5T1| -0, 0LT20 +0.006001 |-0.01267+ 0. 00k281 | -0,02965 + 0, 007104 | -0, +0.0015%
+2]=0, 02000 + 0, 00 L5519 + 0. @371 [+4.C - O MEREL]-0.0T07 OB [0, 0158 + 000501 | -0, Gl OO, [0« GL3DD + 0, O35, [ 0.03615 + 0. ~0. G0 + 0, TLhg,

-3.2 =0, C\m:g glﬂd.i 3 %3:0.0155};1 =1. gﬁ«t 0,087 -o.oug'r =0.016%5 +o.00h;1 -O.w +0, wﬁl-lu =0.00k + 0. o1 |-0. ogmz+o.w1 + 0,039
o.g ~0,01583 + 0, 008764 | -0, 06126 + 0.009711 |04 maa+o.§au -o.ggﬁ 1]-0.02085 +o.ggﬂ: =0.06hg8 +0. oog:zu =0,01k90+ 0,00h4 34, -0.09e3-6+o -1.m + 0,081
0,%(-0,0155% + 0.00k34 £ | -0.03815+ 0. 1]-0.00189+0. -0, 0. +0 =0,085  +0.002084 |-0,01k95 + 0. 00kS54 | -0 % k. - 0.807654
0.6-0.01105 +0.003981|-0 1+ 0, -0, +o,ou. 51 (-0, 01R0k -0.05316 + 0.0079L| 0,61%86 +0,0236kL |-0.01h05+ 0, 00KLR. | -0, +0 ~1,gh3%0 + 0,085851
0,7|=0.00911 + 0.0055%4 -o.gg% 0. 1.«-0-0!-01'34-0.% ~0.312 ~0.0058% + 0.009901 (-1, %153 +0,06%1B1(-0,00085+ 0,0085921, [ -0.C9380 + 0. 00GLEL | -0 +o.%
o.; £ +0.003204 | -0. 0051+ 0,00k581 |-0.02095 + O, -o.o:l.ﬂg ~0.11650 +0.011104 | k,11516 - 0,208901 |0, +0.008601 | 0. 05982 + 0005461 | -0. 08321, + 0.
0.5|-0 m +0,00200 | -0, GLC28 + 0, 003584 | -0, 02518 + 0. 0053 &1 [ =0, 0,00056 + 0,009T4|-1. 00 + 0. 082971 -0, 00085 + 0, 008804 | 0, 0195 + 0, 00 | -0, 04388 +0. 000851,

410 [-0.005%% + 0,0014541 -0, 01074 + 0,008%%4 |-0. 0535 6+ 0, 005001 0.00%T + 000855 <0, 00557 + 0. 00500 -0, 50000 + 0, 00000 | 0. 00521 + 0, 00M B 1 -0, 0UNE2 40,000k A1
0.1 -o.%w.oosaﬂ =0.02115+ 0. 4 [-0.21869+ 0, 01 1k1.|~0.0C*. -0.00709 +0,005k41 | -0.01202 + ¢, 00R3T4|-0,00600 + 0,008001, | ~0.0LE6T + 0, 00heB | -0, %gm 007104,
0,2]-0.0075% +0.003151|-0. 02008 +0. % -0.13919+ 0, k7L odée =0, +0.03211 [-0,003). + 0,00k581 |-0,00601 + 0,00279L | -0. +o.cm& +o.${£s_
0.5 |-0. +0,003071 | -0. 01823 + 0,091/ [-0.10152 + 0,012554 ) -0, 00628 +0. Doassi -o.% +0,008511 [-0,016% + 0.00k5™H. |=0.,00600 + 0,0027T4 [ -0,024a1+ O, 0,092+ 0.

o.e —a.w +0, 00264 1| -0,015883 + o.g'(& ~0.05188 + 0.009T11 | -0, 0k 36 -o.oo% + 0,00%4k1 | -0, 02226 + 0,009 -o.oo:gsw.gl’t{i <0,01k90+ 0,051 | -0,05236 + o.ggi
0.%]-0.00601 +0, -0.013%3 + 000434 1, |-0.Q3815 + 0, i =0.0L +0.003604 | -0.03262 +o.wsﬁ =0,007T7+0. -0.01493+ 0.004361| -0 %

0.6 -o.ggg w.gm ~0.0110% +0,005981 [-0.0235), + 0, 1 . -0, oLk w.mi «0,09518 + 0,007 | -0.00581+ 0.00a601 | -0.C1kC6 + 0,004191| -0. +0.010%84
o.; -0, +0.002+74|-0.00611 + 0.00%551 -o.mmwga-o.gg =0,00096 + 0,00a8TL 3.%12 tgmi -o.uﬁlag +g.m009901 ﬁ' T;g mmi 3@@:3.% _-g.ggg :g.mma:si

. 00k gh + 0. . 005811 | =0, . . ' v =0, +0, . * X . K .

g.g 39:-,75:3% ﬁiﬂ.ﬁ* g.mw_u ﬁr_&aﬂ;: Sm}?éf 0.006TR + 000201 -0:@&2 +0.00%Thi |0, 08808 + 0.000TRY -occcl.ta&w:.-__'.ri_ 000689 4+ 0. 00%CM | -0, 00158 + 0. 005714

169¢ NI VOVN

6



Integration

Control points
ureus/\ /
|
\ : an

T 7
H Y J 11
—_—C | ~ o —~
4 \ o aY
3o 1 4 7
3¢ o O ot—H— %7
So— 2 5 8
3¢ o o o
7T T =3 Q
?C— “~J Wt ~F

I ] ] 1 ] I+IO
-20 l 4 8 12 16 +20

nE

Figure 1l.- Typicel lasyout for lifting-surface method applied to a
rectangulsr wing.
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5 Present analysis 380
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Flgure 2.- Variatlion of 11ft end moment with reduced frequency k for a rectengular wing oscil-
lating in pltch ebout 1its midchord. A = 2; M= 0.
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Figure L.- Variation of 1ift with reduced frequency k for a delta wing
oscillating in pitch about its midchord. A = 4; M= O.
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Figure 5.~ Variation of moment with reduced frequency k for a delta wing
oscillating in pitch gbout its midchord. A = L4; M= 0.
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